Skip to contents

Calculate the MED for the NHANES_MPED data (before 2005, 1999-2004) within 1 step for day 1, day 2, or day 1 and 2 combined (age >= 2 only)

Usage

MED_NHANES_MPED(
  MPED_PER_100_GRAM_PATH = NULL,
  WJFRT = NULL,
  NUTRIENT_PATH = NULL,
  NUTRIENT_IND_PATH = NULL,
  DEMO_PATH,
  NUTRIENT_PATH2 = NULL,
  NUTRIENT_IND_PATH2 = NULL
)

Arguments

MPED_PER_100_GRAM_PATH

The file path for the MPED per 100 gram data for the day 1 and day 2 data. The file name should be like: pyr_tot_d1.sas7bdat

WJFRT

The file path for the WJFRT data for the day 1 and day2 data. The file name should be like: wjfrt.sas7bdat

NUTRIENT_PATH

The file path for the NUTRIENT data for the day 1 data. The file name should be like: DR1TOT_J.XPT or DRXTOT_B.XPT

NUTRIENT_IND_PATH

The file path for the NUTRIENT_IND data for the day 1 data. The file name should be like: DR1IFF_J.XPT

DEMO_PATH

The file path for the DEMOGRAPHIC data. The file name should be like: DEMO_J.XPT

NUTRIENT_PATH2

The file path for the NUTRIENT2 data for the day 2 data. The file name should be like: DR2TOT_J.XPT

NUTRIENT_IND_PATH2

The file path for the NUTRIENT_IND2 data for the day 2 data The file name should be like: DR2IFF_J.XPT

Value

The MED and its component scores and serving sizes

Examples

data("NHANES_20032004")
MED_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)
#> Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
#> # A tibble: 7,647 × 12
#>     SEQN MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES MED_NUTS
#>    <dbl>   <dbl>      <dbl>   <dbl>   <dbl>      <dbl>       <dbl>    <dbl>
#>  1 21005     2          2       0       0.5        0.5         0        0.5
#>  2 21006     3.5        3.5     0       0          0.5         0.5      0.5
#>  3 21007     2.5        2.5     0       0.5        0           0        0  
#>  4 21008     3.5        3.5     0       1          0.5         1        0  
#>  5 21009     4          4       0       0.5        0.5         0.5      0  
#>  6 21010     2          1.5     0       0          0           1        0  
#>  7 21012     3          3       0       0.5        0.5         1        0  
#>  8 21013     2.5        2.5     0       0          0           0.5      0.5
#>  9 21014     5          5       0.5     1          0.5         1        0.5
#> 10 21015     4.5        4.5     0.5     0.5        1           1        0.5
#> # ℹ 7,637 more rows
#> # ℹ 4 more variables: MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
#> #   MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>