dietaryindex.rmd
Getting Started
Title: Dietaryindex: A User-Friendly and Versatile R Package for Standardizing Dietary Pattern Analysis in Epidemiological and Clinical Studies
Authors: Jiada James Zhan et al.
The dietaryindex package currently contains the following key functions:
- Generic functions
-
HEI2020()
, Healthy Eating Index 2020 & HEI-Toddlers-2020 -
HEI2015()
, Healthy Eating Index 2015 -
AHEI()
, alternative healthy eating index -
AHEIP()
, alternative healthy eating index - pregnancy -
DASH()
, Dietary Approaches to Stop Hypertension -
DASHI()
, DASH Index in nutrients from the DASH trial -
MED()
, Alternate Mediterranean Diet Score (aMED) -
MEDI()
, Mediterranean diet in serving sizes from the PREDIMED trial -
DII()
, Dietary Inflammation Index -
ACS2020_V1()
, American Cancer Society 2020 diet score -
ACS2020_V2()
, Alternate calculation method of the American Cancer Society 2020 diet score, intended for use when percent calories from highly processed foods and refined grains is not available (uses daily servings per 1000 calories instead) -
PHDI()
, Planetary Health Diet Index from the EAT-Lancet Commission
-
- NHANES
- For NHANES data starting at the 2005-2006 cycle
-
HEI2020_NHANES_FPED()
, Calculating HEI2020 & HEI-Toddlers-2020 with 1 step using the NHANES_FPED datasets -
HEI2015_NHANES_FPED()
, Calculating HEI2015 with 1 step using the NHANES_FPED data -
AHEI_NHANES_FPED()
, Calculating AHEI with 1 step using the NHANES_FPED data -
DASH_NHANES_FPED()
, Calculating DASH (quintile-based) with 1 step using the NHANES_FPED data -
DASHI_NHANES_FPED()
, Calculating DASHI (nutrient-based from the DASH trial) with 1 step using the NHANES_FPED data -
MED_NHANES_FPED()
, Calculating aMED (median-based) with 1 step using the NHANES_FPED data -
MEDI_NHANES_FPED()
, Calculating MEDI (serving size-based from the PREDIMED trial) with 1 step using the NHANES_FPED data -
DII_NHANES_FPED()
, Calculating DII with 1 step using the NHANES_FPED data
-
- For NHANES data between 1999-2004
-
HEI2020_NHANES_MPED()
, Calculating HEI2020 with 1 step using the NHANES_MPED data -
HEI2015_NHANES_MPED()
, Calculating HEI2015 with 1 step using the NHANES_MPED data -
AHEI_NHANES_MPED()
, Calculating AHEI with 1 step using the NHANES_MPED data -
DASH_NHANES_MPED()
, Calculating DASH with 1 step using the NHANES_MPED data -
DASHI_NHANES_MPED()
, Calculating DASHI with 1 step using the NHANES_MPED data -
MED_NHANES_MPED()
, Calculating aMED with 1 step using the NHANES_MPED data -
MEDI_NHANES_MPED()
, Calculating MEDI with 1 step using the NHANES_MPED data -
DII_NHANES_MPED()
, Calculating DII with 1 step using the NHANES_MPED data
-
- For NHANES data starting at the 2005-2006 cycle
- ASA24
-
HEI2020_ASA24()
, Calculating HEI2020 for non-toddlers (age > 2 years) with 1 step using the ASA24 data -
HEI2020_TODDLERS_ASA24()
, Calculating HEI2020 for non-toddlers (age 1-2 years) with 1 step using the ASA24 data -
HEI2015_ASA24()
, Calculating HEI2015 with 1 step using the ASA24 data -
AHEI_F_ASA24()
, Calculate the AHEI (female only) within 1 step using the ASA24 data -
AHEI_M_ASA24()
, Calculate the AHEI (male only) within 1 step using the ASA24 data -
DASH_ASA24()
, Calculating DASH with 1 step using the ASA24 data -
MED_ASA24()
, Calculating aMED with 1 step using the ASA24 data -
DII_ASA24()
, Calculating DII with 1 step using the ASA24 data
-
- DHQ3
-
HEI2015_DHQ3()
, Calculating HEI2015 with 1 step using the DHQ3 data -
AHEI_DHQ3()
, Calculate the AHEI (female or male) within 1 step using the DHQ3 data -
DASH_DHQ3()
, Calculating DASH with 1 step using the DHQ3 data. The data is Detailed analysis file, ending with detail.csv -
MED_DHQ3()
, Calculating aMED with 1 step using the DHQ3 data
-
- BLOCK
-
HEI2015_BLOCK()
, Calculating HEI2015 with 1 step using the BLOCK data -
MED_BLOCK()
, Calculating aMED with 1 step using the BLOCK data -
DII_BLOCK()
, Calculating DII with 1 step using the BLOCK data -
DASH_BLOCK()
, Calculating DASH with 1 step using the BLOCK data -
AHEI_BLOCK()
, Calculating AHEI with 1 step using the BLOCK data -
AHEIP_BLOCK()
, Calculating AHEIP with 1 step using the BLOCK data
-
Note: all NHANES functions allow users to enter the first day data, or the second day data, or first day + second day data and return the results accordingly. See examples later.
dietaryindex has compiled NHANES data from 2005 - 2020 for your convenience. This includes NHANES 2005-2006, 2007-2008, 2009-2010, 2011-2012, 2013-2014, 2015-2016, 2017-2018, 2017-2020. To retrieve the data:
Download the NHANES_combined folder from the Google Drive (https://drive.google.com/drive/u/2/folders/1umjhuS22aHEW_bU5AjYa8vrae91gsb0D)
Download the NHANES_combined folder from the GitHub dietaryindex_NHANES page (https://github.com/jamesjiadazhan/dietaryindex_NHANES/tree/main/data/NHANES_combined)
Then, you may use the following codes to load the data:
# set up working dictionary
setwd("/Users/james/Library/Mobile Documents/com~apple~CloudDocs/Desktop/Emory University - Ph.D./dietaryindex_package/NHANES_combined/dietaryindex_NHANES/data/NHANES_combined")
## NHANES 2005-2006, for example
load("NHANES_20052006.rda")
Examples for data format:
NHANES data format
# install.packages("devtools") #If you don't have "devtools" installed already
# devtools::install_github("jamesjiadazhan/dietaryindex") # Install the package from GitHub
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
library(dietaryindex)
## load dplyr package for data processing
library(dplyr)
## load the survey package for NHANES data
library(survey)
## Warning: package 'survival' was built under R version 4.3.3
## load the gtsummary package for summarizing the results
library(gtsummary)
data("NHANES_20172018")
Food pattern data for the 2017-2018 first day data
SEQN | RIAGENDR | RIDAGEYR | RIDRETH3 | SDMVPSU | SDMVSTRA | INDFMIN2 | INDFMPIR | WTDRD1 | WTDR2D | DR1DRSTZ | DRABF | DRDINT | DR1TNUMF | DR1T_F_TOTAL | DR1T_F_CITMLB | DR1T_F_OTHER | DR1T_F_JUICE | DR1T_V_TOTAL | DR1T_V_DRKGR | DR1T_V_REDOR_TOTAL | DR1T_V_REDOR_TOMATO | DR1T_V_REDOR_OTHER | DR1T_V_STARCHY_TOTAL | DR1T_V_STARCHY_POTATO | DR1T_V_STARCHY_OTHER | DR1T_V_OTHER | DR1T_V_LEGUMES | DR1T_G_TOTAL | DR1T_G_WHOLE | DR1T_G_REFINED | DR1T_PF_TOTAL | DR1T_PF_MPS_TOTAL | DR1T_PF_MEAT | DR1T_PF_CUREDMEAT | DR1T_PF_ORGAN | DR1T_PF_POULT | DR1T_PF_SEAFD_HI | DR1T_PF_SEAFD_LOW | DR1T_PF_EGGS | DR1T_PF_SOY | DR1T_PF_NUTSDS | DR1T_PF_LEGUMES | DR1T_D_TOTAL | DR1T_D_MILK | DR1T_D_YOGURT | DR1T_D_CHEESE | DR1T_OILS | DR1T_SOLID_FATS | DR1T_ADD_SUGARS | DR1T_A_DRINKS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
93703 | 2 | 2 | 6 | 2 | 145 | 15 | 5.00 | 0.000 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
93704 | 1 | 2 | 3 | 1 | 143 | 15 | 5.00 | 81714.005 | 82442.869 | 1 | 2 | 2 | 13 | 0.99 | 0 | 0.00 | 0.99 | 0.82 | 0.00 | 0.03 | 0.03 | 0.00 | 0.73 | 0.73 | 0.00 | 0.06 | 0.00 | 3.03 | 0.00 | 3.03 | 3.52 | 3.30 | 0.00 | 0.00 | 0 | 2.12 | 1.18 | 0 | 0.22 | 0.00 | 0.00 | 0.00 | 1.73 | 1.06 | 0 | 0.67 | 23.16 | 9.53 | 9.12 | 0 |
93705 | 2 | 66 | 4 | 2 | 145 | 3 | 0.82 | 7185.561 | 5640.391 | 1 | 2 | 2 | 17 | 0.00 | 0 | 0.00 | 0.00 | 1.50 | 0.31 | 0.59 | 0.16 | 0.42 | 0.14 | 0.11 | 0.03 | 0.46 | 0.15 | 2.10 | 0.00 | 2.10 | 0.80 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.01 | 0.79 | 0.00 | 0.58 | 0.22 | 0.03 | 0 | 0.19 | 21.68 | 31.14 | 19.42 | 0 |
93706 | 1 | 18 | 6 | 2 | 134 | NA | NA | 6463.883 | 0.000 | 1 | 2 | 1 | 8 | 0.00 | 0 | 0.00 | 0.00 | 0.72 | 0.00 | 0.50 | 0.30 | 0.20 | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 4.51 | 0.00 | 4.51 | 8.79 | 8.79 | 0.00 | 0.00 | 0 | 8.79 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 2.03 | 0.00 | 0 | 2.03 | 58.16 | 39.73 | 1.64 | 0 |
93707 | 1 | 13 | 7 | 1 | 138 | 10 | 1.88 | 15333.777 | 22707.067 | 1 | 2 | 2 | 16 | 0.00 | 0 | 0.00 | 0.00 | 0.94 | 0.00 | 0.01 | 0.01 | 0.00 | 0.93 | 0.93 | 0.00 | 0.00 | 0.00 | 5.26 | 4.12 | 1.14 | 5.61 | 3.62 | 0.00 | 1.56 | 0 | 2.06 | 0.00 | 0 | 1.99 | 0.00 | 0.00 | 0.00 | 0.26 | 0.26 | 0 | 0.00 | 22.79 | 48.34 | 18.65 | 0 |
93708 | 2 | 66 | 6 | 2 | 138 | 6 | 1.63 | 10825.545 | 22481.854 | 1 | 2 | 2 | 14 | 0.49 | 0 | 0.49 | 0.00 | 2.33 | 0.00 | 0.04 | 0.00 | 0.04 | 0.03 | 0.00 | 0.03 | 2.26 | 0.00 | 3.53 | 0.34 | 3.19 | 4.73 | 2.16 | 2.16 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 2.57 | 0.00 | 0.06 | 0.06 | 0 | 0.00 | 19.13 | 31.15 | 6.00 | 0 |
Nutrient data for the 2017-2018 first day data
SEQN | WTDRD1 | WTDR2D | DR1DRSTZ | DR1EXMER | DRABF | DRDINT | DR1DBIH | DR1DAY | DR1LANG | DR1MRESP | DR1HELP | DBQ095Z | DBD100 | DRQSPREP | DR1STY | DR1SKY | DRQSDIET | DRQSDT1 | DRQSDT2 | DRQSDT3 | DRQSDT4 | DRQSDT5 | DRQSDT6 | DRQSDT7 | DRQSDT8 | DRQSDT9 | DRQSDT10 | DRQSDT11 | DRQSDT12 | DRQSDT91 | DR1TNUMF | DR1TKCAL | DR1TPROT | DR1TCARB | DR1TSUGR | DR1TFIBE | DR1TTFAT | DR1TSFAT | DR1TMFAT | DR1TPFAT | DR1TCHOL | DR1TATOC | DR1TATOA | DR1TRET | DR1TVARA | DR1TACAR | DR1TBCAR | DR1TCRYP | DR1TLYCO | DR1TLZ | DR1TVB1 | DR1TVB2 | DR1TNIAC | DR1TVB6 | DR1TFOLA | DR1TFA | DR1TFF | DR1TFDFE | DR1TCHL | DR1TVB12 | DR1TB12A | DR1TVC | DR1TVD | DR1TVK | DR1TCALC | DR1TPHOS | DR1TMAGN | DR1TIRON | DR1TZINC | DR1TCOPP | DR1TSODI | DR1TPOTA | DR1TSELE | DR1TCAFF | DR1TTHEO | DR1TALCO | DR1TMOIS | DR1TS040 | DR1TS060 | DR1TS080 | DR1TS100 | DR1TS120 | DR1TS140 | DR1TS160 | DR1TS180 | DR1TM161 | DR1TM181 | DR1TM201 | DR1TM221 | DR1TP182 | DR1TP183 | DR1TP184 | DR1TP204 | DR1TP205 | DR1TP225 | DR1TP226 | DR1_300 | DR1_320Z | DR1_330Z | DR1BWATZ | DR1TWSZ | DRD340 | DRD350A | DRD350AQ | DRD350B | DRD350BQ | DRD350C | DRD350CQ | DRD350D | DRD350DQ | DRD350E | DRD350EQ | DRD350F | DRD350FQ | DRD350G | DRD350GQ | DRD350H | DRD350HQ | DRD350I | DRD350IQ | DRD350J | DRD350JQ | DRD350K | DRD360 | DRD370A | DRD370AQ | DRD370B | DRD370BQ | DRD370C | DRD370CQ | DRD370D | DRD370DQ | DRD370E | DRD370EQ | DRD370F | DRD370FQ | DRD370G | DRD370GQ | DRD370H | DRD370HQ | DRD370I | DRD370IQ | DRD370J | DRD370JQ | DRD370K | DRD370KQ | DRD370L | DRD370LQ | DRD370M | DRD370MQ | DRD370N | DRD370NQ | DRD370O | DRD370OQ | DRD370P | DRD370PQ | DRD370Q | DRD370QQ | DRD370R | DRD370RQ | DRD370S | DRD370SQ | DRD370T | DRD370TQ | DRD370U | DRD370UQ | DRD370V |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
93703 | 0.000 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
93704 | 81714.005 | 82442.869 | 1 | 49 | 2 | 2 | 7 | 2 | 1 | 2 | 12 | 4 | NA | 2 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 13 | 1230 | 51.58 | 160.46 | 76.97 | 5.9 | 43.24 | 11.372 | 14.333 | 12.506 | 144 | 5.80 | 0 | 254 | 262 | 1 | 94 | 1 | 684 | 321 | 0.679 | 0.959 | 15.617 | 1.369 | 100 | 33 | 66 | 123 | 198.1 | 3.83 | 0 | 60.1 | 8.1 | 38.2 | 700 | 1170 | 151 | 3.55 | 4.18 | 0.497 | 2198 | 1970 | 52.9 | 8 | 54 | 0 | 875.00 | 0.219 | 0.166 | 0.119 | 0.273 | 0.291 | 1.050 | 6.577 | 2.098 | 0.337 | 13.682 | 0.392 | 0.029 | 11.087 | 1.054 | 0.031 | 0.079 | 0.080 | 0.027 | 0.150 | 2 | 240 | 240 | 0 | 91 | 1 | 2 | NA | 1 | 2 | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 2 | 2 | NA | 2 | NA | 2 | 1 | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 |
93705 | 7185.561 | 5640.391 | 1 | 73 | 2 | 2 | 5 | 1 | 1 | 1 | 11 | 4 | NA | 3 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 17 | 1202 | 20.01 | 157.45 | 91.55 | 8.4 | 56.98 | 16.435 | 16.432 | 19.786 | 14 | 5.66 | 0 | 32 | 436 | 1551 | 4096 | 2 | 1573 | 1645 | 0.589 | 1.237 | 7.576 | 0.458 | 179 | 32 | 146 | 202 | 95.0 | 0.33 | 0 | 21.4 | 0.2 | 155.5 | 314 | 466 | 162 | 8.80 | 2.93 | 0.689 | 3574 | 1640 | 22.1 | 361 | 120 | 0 | 1773.88 | 0.156 | 0.077 | 0.058 | 0.122 | 0.145 | 0.447 | 8.951 | 5.980 | 0.118 | 16.047 | 0.101 | 0.014 | 17.805 | 1.943 | 0.000 | 0.014 | 0.001 | 0.001 | 0.001 | 2 | 315 | 315 | 0 | 1 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
93706 | 6463.883 | 0.000 | 1 | 86 | 2 | 1 | NA | 6 | 1 | 1 | 12 | 1 | 1 | 3 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 8 | 1987 | 94.19 | 89.82 | 14.73 | 7.1 | 137.39 | 35.169 | 45.805 | 49.873 | 462 | 10.02 | 0 | 198 | 431 | 872 | 2363 | 2 | 4605 | 313 | 1.152 | 1.033 | 26.831 | 1.821 | 267 | 125 | 139 | 354 | 367.9 | 2.30 | 0 | 9.7 | 0.7 | 138.4 | 869 | 1025 | 187 | 8.52 | 8.05 | 0.614 | 3657 | 1247 | 118.5 | 0 | 0 | 0 | 3405.40 | 0.263 | 0.203 | 0.140 | 0.377 | 0.459 | 1.816 | 23.150 | 7.747 | 3.387 | 41.577 | 0.524 | 0.011 | 44.097 | 5.074 | 0.016 | 0.308 | 0.021 | 0.044 | 0.021 | 3 | 3042 | 0 | 3042 | 1 | 1 | 1 | 2 | 2 | NA | 2 | NA | 2 | NA | 1 | 2 | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 3 | 2 | NA | 1 | 3 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 |
93707 | 15333.777 | 22707.067 | 1 | 81 | 2 | 2 | 14 | 2 | 1 | 1 | 12 | 1 | 9 | 2 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 16 | 1775 | 59.48 | 188.15 | 84.22 | 10.9 | 89.18 | 33.252 | 33.712 | 12.424 | 585 | 8.92 | 0 | 443 | 449 | 0 | 70 | 9 | 516 | 579 | 0.755 | 1.296 | 13.920 | 0.951 | 124 | 15 | 110 | 135 | 369.4 | 2.08 | 0 | 12.9 | 2.7 | 23.5 | 535 | 945 | 215 | 8.42 | 8.30 | 0.955 | 2450 | 1769 | 91.9 | 21 | 133 | 0 | 2222.41 | 1.015 | 0.616 | 0.414 | 0.849 | 1.138 | 3.383 | 17.280 | 7.815 | 1.807 | 32.089 | 0.284 | 0.046 | 11.221 | 0.873 | 0.002 | 0.237 | 0.008 | 0.015 | 0.058 | 2 | 1785 | 1545 | 240 | 99 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
93708 | 10825.545 | 22481.854 | 1 | 73 | 2 | 2 | 41 | 7 | 6 | 1 | 9 | 4 | NA | 4 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 14 | 1251 | 50.96 | 123.71 | 49.84 | 16.6 | 65.49 | 17.446 | 29.000 | 14.823 | 71 | 6.20 | 0 | 35 | 236 | 323 | 2245 | 26 | 0 | 2148 | 1.143 | 0.840 | 15.368 | 1.096 | 260 | 74 | 185 | 311 | 175.7 | 1.09 | 0 | 146.4 | 0.8 | 137.0 | 412 | 635 | 248 | 11.49 | 6.45 | 1.049 | 2135 | 1631 | 54.3 | 33 | 69 | 0 | 2821.95 | 0.070 | 0.044 | 0.027 | 0.091 | 0.097 | 0.499 | 9.440 | 6.126 | 0.446 | 28.177 | 0.310 | 0.003 | 13.927 | 0.804 | 0.000 | 0.038 | 0.001 | 0.004 | 0.000 | 2 | 2160 | 720 | 1440 | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 1 | 2 | 2 | NA | 2 | NA | 2 | NA | 1 | 2 | 2 | NA | 2 | NA | 2 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 6 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 |
Demographic data for the 2017-2018 first and second day data
SEQN | SDDSRVYR | RIDSTATR | RIAGENDR | RIDAGEYR | RIDAGEMN | RIDRETH1 | RIDRETH3 | RIDEXMON | RIDEXAGM | DMQMILIZ | DMQADFC | DMDBORN4 | DMDCITZN | DMDYRSUS | DMDEDUC3 | DMDEDUC2 | DMDMARTL | RIDEXPRG | SIALANG | SIAPROXY | SIAINTRP | FIALANG | FIAPROXY | FIAINTRP | MIALANG | MIAPROXY | MIAINTRP | AIALANGA | DMDHHSIZ | DMDFMSIZ | DMDHHSZA | DMDHHSZB | DMDHHSZE | DMDHRGND | DMDHRAGZ | DMDHREDZ | DMDHRMAZ | DMDHSEDZ | WTINT2YR | WTMEC2YR | SDMVPSU | SDMVSTRA | INDHHIN2 | INDFMIN2 | INDFMPIR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
93703 | 10 | 2 | 2 | 2 | NA | 5 | 6 | 2 | 27 | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 2 | NA | NA | NA | NA | 5 | 5 | 3 | 0 | 0 | 1 | 2 | 3 | 1 | 3 | 9246.492 | 8539.731 | 2 | 145 | 15 | 15 | 5.00 |
93704 | 10 | 2 | 1 | 2 | NA | 3 | 3 | 1 | 33 | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 2 | NA | NA | NA | NA | 4 | 4 | 2 | 0 | 0 | 1 | 2 | 3 | 1 | 2 | 37338.768 | 42566.615 | 1 | 143 | 15 | 15 | 5.00 |
93705 | 10 | 2 | 2 | 66 | NA | 4 | 4 | 2 | NA | 2 | NA | 1 | 1 | NA | NA | 2 | 3 | NA | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 4 | 1 | 2 | NA | 8614.571 | 8338.420 | 2 | 145 | 3 | 3 | 0.82 |
93706 | 10 | 2 | 1 | 18 | NA | 5 | 6 | 2 | 222 | 2 | NA | 1 | 1 | NA | 15 | NA | NA | NA | 1 | 2 | 2 | NA | NA | NA | 1 | 2 | 2 | 1 | 5 | 5 | 0 | 0 | 1 | 1 | 4 | 3 | 1 | 2 | 8548.633 | 8723.440 | 2 | 134 | NA | NA | NA |
93707 | 10 | 2 | 1 | 13 | NA | 5 | 7 | 2 | 158 | NA | NA | 1 | 1 | NA | 6 | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 7 | 7 | 0 | 3 | 0 | 1 | 3 | 2 | 1 | 3 | 6769.345 | 7064.610 | 1 | 138 | 10 | 10 | 1.88 |
93708 | 10 | 2 | 2 | 66 | NA | 5 | 6 | 2 | NA | 2 | NA | 2 | 1 | 7 | NA | 1 | 1 | NA | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 0 | 0 | 2 | 1 | 4 | 1 | 1 | 1 | 13329.451 | 14372.489 | 2 | 138 | 6 | 6 | 1.63 |
Food pattern data for the 2017-2018 second day data
SEQN | RIAGENDR | RIDAGEYR | RIDRETH3 | SDMVPSU | SDMVSTRA | INDFMIN2 | INDFMPIR | WTDRD1 | WTDR2D | DR2DRSTZ | DRABF | DRDINT | DR2TNUMF | DR2T_F_TOTAL | DR2T_F_CITMLB | DR2T_F_OTHER | DR2T_F_JUICE | DR2T_V_TOTAL | DR2T_V_DRKGR | DR2T_V_REDOR_TOTAL | DR2T_V_REDOR_TOMATO | DR2T_V_REDOR_OTHER | DR2T_V_STARCHY_TOTAL | DR2T_V_STARCHY_POTATO | DR2T_V_STARCHY_OTHER | DR2T_V_OTHER | DR2T_V_LEGUMES | DR2T_G_TOTAL | DR2T_G_WHOLE | DR2T_G_REFINED | DR2T_PF_TOTAL | DR2T_PF_MPS_TOTAL | DR2T_PF_MEAT | DR2T_PF_CUREDMEAT | DR2T_PF_ORGAN | DR2T_PF_POULT | DR2T_PF_SEAFD_HI | DR2T_PF_SEAFD_LOW | DR2T_PF_EGGS | DR2T_PF_SOY | DR2T_PF_NUTSDS | DR2T_PF_LEGUMES | DR2T_D_TOTAL | DR2T_D_MILK | DR2T_D_YOGURT | DR2T_D_CHEESE | DR2T_OILS | DR2T_SOLID_FATS | DR2T_ADD_SUGARS | DR2T_A_DRINKS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
93703 | 2 | 2 | 6 | 2 | 145 | 15 | 5.00 | 0.000 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
93704 | 1 | 2 | 3 | 1 | 143 | 15 | 5.00 | 81714.005 | 82442.869 | 1 | 2 | 2 | 13 | 1.94 | 0.61 | 0.46 | 0.87 | 0.02 | 0 | 0.02 | 0.02 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 5.00 | 0.72 | 4.28 | 0.46 | 0.00 | 0.00 | 0.0 | 0 | 0.00 | 0.00 | 0.00 | 0.46 | 0.00 | 0.0 | 0.00 | 1.74 | 1.54 | 0 | 0.19 | 19.42 | 10.28 | 17.25 | 0 |
93705 | 2 | 66 | 4 | 2 | 145 | 3 | 0.82 | 7185.561 | 5640.391 | 1 | 2 | 2 | 14 | 0.03 | 0.00 | 0.00 | 0.03 | 0.29 | 0 | 0.28 | 0.25 | 0.03 | 0.00 | 0 | 0.00 | 0.01 | 0.23 | 5.39 | 0.00 | 5.39 | 2.75 | 0.30 | 0.00 | 0.3 | 0 | 0.00 | 0.00 | 0.00 | 2.05 | 0.00 | 0.4 | 0.91 | 0.52 | 0.00 | 0 | 0.51 | 25.40 | 20.01 | 8.67 | 0 |
93706 | 1 | 18 | 6 | 2 | 134 | NA | NA | 6463.883 | 0.000 | 5 | 2 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
93707 | 1 | 13 | 7 | 1 | 138 | 10 | 1.88 | 15333.777 | 22707.067 | 1 | 2 | 2 | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.70 | 0 | 0.06 | 0.06 | 0.00 | 0.64 | 0 | 0.64 | 0.00 | 0.00 | 2.94 | 0.90 | 2.04 | 10.29 | 7.98 | 6.69 | 0.0 | 0 | 1.29 | 0.00 | 0.00 | 2.25 | 0.07 | 0.0 | 0.00 | 0.04 | 0.04 | 0 | 0.00 | 30.07 | 38.10 | 18.15 | 0 |
93708 | 2 | 66 | 6 | 2 | 138 | 6 | 1.63 | 10825.545 | 22481.854 | 1 | 2 | 2 | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.26 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.26 | 0.00 | 2.59 | 0.00 | 2.59 | 2.34 | 2.31 | 0.00 | 0.0 | 0 | 0.89 | 0.94 | 0.48 | 0.03 | 0.00 | 0.0 | 0.00 | 1.14 | 1.11 | 0 | 0.00 | 10.13 | 24.19 | 6.44 | 0 |
Nutrient data for the 2017-2018 second day data
SEQN | WTDRD1 | WTDR2D | DR2DRSTZ | DR2EXMER | DRABF | DRDINT | DR2DBIH | DR2DAY | DR2LANG | DR2MRESP | DR2HELP | DR2TNUMF | DR2STY | DR2SKY | DR2TKCAL | DR2TPROT | DR2TCARB | DR2TSUGR | DR2TFIBE | DR2TTFAT | DR2TSFAT | DR2TMFAT | DR2TPFAT | DR2TCHOL | DR2TATOC | DR2TATOA | DR2TRET | DR2TVARA | DR2TACAR | DR2TBCAR | DR2TCRYP | DR2TLYCO | DR2TLZ | DR2TVB1 | DR2TVB2 | DR2TNIAC | DR2TVB6 | DR2TFOLA | DR2TFA | DR2TFF | DR2TFDFE | DR2TCHL | DR2TVB12 | DR2TB12A | DR2TVC | DR2TVD | DR2TVK | DR2TCALC | DR2TPHOS | DR2TMAGN | DR2TIRON | DR2TZINC | DR2TCOPP | DR2TSODI | DR2TPOTA | DR2TSELE | DR2TCAFF | DR2TTHEO | DR2TALCO | DR2TMOIS | DR2TS040 | DR2TS060 | DR2TS080 | DR2TS100 | DR2TS120 | DR2TS140 | DR2TS160 | DR2TS180 | DR2TM161 | DR2TM181 | DR2TM201 | DR2TM221 | DR2TP182 | DR2TP183 | DR2TP184 | DR2TP204 | DR2TP205 | DR2TP225 | DR2TP226 | DR2_300 | DR2_320Z | DR2_330Z | DR2BWATZ | DR2TWSZ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
93703 | 0.000 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
93704 | 81714.005 | 82442.869 | 1 | 87 | 2 | 2 | 18 | 6 | 1 | 2 | 12 | 13 | 2 | NA | 1356 | 30.49 | 229.69 | 134.37 | 8.2 | 37.02 | 10.368 | 10.443 | 13.249 | 70 | 3.75 | 0 | 562 | 589 | 0 | 299 | 67 | 3835 | 174 | 1.407 | 1.562 | 10.871 | 1.189 | 360 | 311 | 50 | 577 | 223.0 | 4.74 | 2.08 | 38.3 | 5.4 | 58.2 | 761 | 879 | 147 | 10.06 | 8.13 | 0.473 | 1345 | 1413 | 46.9 | 6 | 54 | 0 | 795.87 | 0.251 | 0.161 | 0.099 | 0.221 | 0.239 | 0.796 | 5.929 | 2.366 | 0.168 | 10.084 | 0.155 | 0.010 | 11.601 | 1.581 | 0.003 | 0.041 | 0.000 | 0.002 | 0.010 | 2 | 0 | 0 | 0 | 91 |
93705 | 7185.561 | 5640.391 | 1 | 91 | 2 | 2 | 15 | 4 | 1 | 1 | 12 | 14 | 2 | NA | 1235 | 38.52 | 147.49 | 43.04 | 13.1 | 55.19 | 14.079 | 19.882 | 17.072 | 402 | 6.15 | 0 | 217 | 267 | 156 | 510 | 15 | 7884 | 582 | 1.001 | 1.274 | 8.549 | 0.418 | 231 | 93 | 139 | 295 | 323.8 | 1.25 | 0.00 | 3.3 | 3.5 | 31.2 | 693 | 738 | 156 | 10.52 | 4.48 | 0.893 | 2447 | 1158 | 67.9 | 146 | 19 | 0 | 1973.77 | 0.104 | 0.082 | 0.063 | 0.170 | 0.217 | 0.613 | 8.728 | 3.519 | 0.441 | 19.072 | 0.176 | 0.003 | 15.339 | 1.365 | 0.001 | 0.201 | 0.002 | 0.011 | 0.059 | 2 | 960 | 0 | 960 | 1 |
93706 | 6463.883 | 0.000 | 5 | NA | 2 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
93707 | 15333.777 | 22707.067 | 1 | 78 | 2 | 2 | 22 | 3 | 1 | 1 | 4 | 14 | 1 | 1 | 1794 | 92.03 | 153.12 | 85.81 | 7.9 | 93.98 | 31.098 | 35.405 | 17.827 | 656 | 10.70 | 0 | 235 | 248 | 16 | 88 | 123 | 2136 | 1160 | 0.428 | 1.240 | 23.431 | 1.827 | 125 | 19 | 106 | 136 | 521.5 | 4.94 | 0.00 | 8.1 | 2.8 | 66.5 | 227 | 1136 | 180 | 13.69 | 14.23 | 0.834 | 2581 | 1805 | 122.2 | 10 | 322 | 0 | 1398.45 | 0.251 | 0.156 | 0.123 | 0.283 | 0.524 | 1.657 | 18.588 | 8.756 | 1.574 | 33.294 | 0.255 | 0.009 | 15.732 | 1.568 | 0.001 | 0.327 | 0.004 | 0.025 | 0.061 | 3 | 1020 | 780 | 240 | 99 |
93708 | 10825.545 | 22481.854 | 1 | 43 | 2 | 2 | 56 | 1 | 1 | 1 | 12 | 15 | 2 | NA | 842 | 32.85 | 83.92 | 42.37 | 2.8 | 41.52 | 14.962 | 13.227 | 8.662 | 126 | 2.98 | 0 | 277 | 323 | 2 | 536 | 3 | 0 | 236 | 0.483 | 0.640 | 7.768 | 0.525 | 103 | 57 | 46 | 143 | 139.6 | 3.36 | 0.00 | 3.4 | 10.9 | 49.1 | 535 | 599 | 99 | 2.77 | 2.98 | 0.332 | 1241 | 831 | 39.7 | 0 | 12 | 0 | 1934.55 | 0.226 | 0.169 | 0.115 | 0.264 | 0.361 | 1.265 | 9.269 | 2.986 | 0.630 | 11.879 | 0.779 | 0.025 | 7.398 | 0.984 | 0.025 | 0.043 | 0.082 | 0.035 | 0.132 | 2 | 1524 | 510 | 1014 | 1 |
ASA24 data format:
ASA24 dietary data for each individual
RecallRecId | UserName | UserID | RecallNo | RecallAttempt | RecallStatus | IntakeStartDateTime | IntakeEndDateTime | ReportingDate | Lang | NumFoods | NumCodes | AmtUsual | KCAL | PROT | TFAT | CARB | MOIS | ALC | CAFF | THEO | SUGR | FIBE | CALC | IRON | MAGN | PHOS | POTA | SODI | ZINC | COPP | SELE | VC | VB1 | VB2 | NIAC | VB6 | FOLA | FA | FF | FDFE | VB12 | VARA | RET | BCAR | ACAR | CRYP | LYCO | LZ | ATOC | VK | CHOLE | SFAT | S040 | S060 | S080 | S100 | S120 | S140 | S160 | S180 | MFAT | M161 | M181 | M201 | M221 | PFAT | P182 | P183 | P184 | P204 | P205 | P225 | P226 | VITD | CHOLN | VITE_ADD | B12_ADD | F_TOTAL | F_CITMLB | F_OTHER | F_JUICE | V_TOTAL | V_DRKGR | V_REDOR_TOTAL | V_REDOR_TOMATO | V_REDOR_OTHER | V_STARCHY_TOTAL | V_STARCHY_POTATO | V_STARCHY_OTHER | V_OTHER | V_LEGUMES | G_TOTAL | G_WHOLE | G_REFINED | PF_TOTAL | PF_MPS_TOTAL | PF_MEAT | PF_CUREDMEAT | PF_ORGAN | PF_POULT | PF_SEAFD_HI | PF_SEAFD_LOW | PF_EGGS | PF_SOY | PF_NUTSDS | PF_LEGUMES | D_TOTAL | D_MILK | D_YOGURT | D_CHEESE | OILS | SOLID_FATS | ADD_SUGARS | A_DRINKS | DataComp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
960a78fa-fdf8-417d-a5d2-e29d7984ac8d | 1 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 23 | 23 | 1 | 2019.1261 | 64.00808 | 97.71591 | 235.86038 | 2386.6157 | 0 | 36.88 | 41.2 | 74.68865 | 23.631891 | 1104.3000 | 15.024851 | 483.81516 | 1150.5633 | 2965.253 | 3415.849 | 8.317065 | 1.6922004 | 103.06994 | 53.30264 | 1.6393786 | 1.5903095 | 22.102181 | 1.5142930 | 393.9672 | 149.24784 | 244.7193 | 496.3751 | 2.959247 | 960.4294 | 320.5494 | 7330.914 | 765.8908 | 22.90329 | 813.3750 | 16872.0702 | 20.156954 | 567.0490 | 217.0211 | 20.891319 | 0.2926330 | 0.2030142 | 0.1435912 | 0.2999671 | 0.3031705 | 1.0094686 | 12.634695 | 4.442925 | 46.080027 | 0.6288449 | 44.737310 | 0.5006182 | 0.00030 | 25.233201 | 23.46477 | 1.5142505 | 0.00030 | 0.1190309 | 0.000528 | 0.0043849 | 0.0265132 | 5.545659 | 320.0657 | 6.8564 | 1.5372 | 0.40730 | 0.0000 | 0.39530 | 0.01200 | 2.006828 | 0.971500 | 0.3217283 | 0.1807500 | 0.1409784 | 0.36150 | 0.180750 | 0.180750 | 0.3521000 | 0.0930 | 6.86142 | 1.784250 | 5.077170 | 5.913528 | 0.00000 | 0 | 0.00000 | 0 | 0.00000 | 0 | 0 | 0.9115442 | 0.2126250 | 4.789359 | 0.3690 | 0.6840 | 0.6840 | 0 | 0 | 61.89215 | 12.830923 | 10.928636 | 0 | 1 |
960a78fa-fdf8-417d-a5d2-e29d7984ac8c | 1 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 2 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 23 | 23 | 1 | 1009.5630 | 32.00404 | 48.85796 | 117.93019 | 1193.3079 | 0 | 18.44 | 20.6 | 37.34432 | 11.815945 | 552.1500 | 7.512426 | 241.90758 | 575.2816 | 1482.626 | 1707.924 | 4.158532 | 0.8461002 | 51.53497 | 26.65132 | 0.8196893 | 0.7951547 | 11.051090 | 0.7571465 | 196.9836 | 74.62392 | 122.3597 | 248.1876 | 1.479623 | 480.2147 | 160.2747 | 3665.457 | 382.9454 | 11.45165 | 406.6875 | 8436.0351 | 10.078477 | 283.5245 | 108.5106 | 10.445659 | 0.1463165 | 0.1015071 | 0.0717956 | 0.1499836 | 0.1515853 | 0.5047343 | 6.317347 | 2.221462 | 23.040013 | 0.3144225 | 22.368655 | 0.2503091 | 0.00015 | 12.616600 | 11.73238 | 0.7571252 | 0.00015 | 0.0595154 | 0.000264 | 0.0021924 | 0.0132566 | 2.772829 | 160.0329 | 3.4282 | 0.7686 | 0.20365 | 0.0000 | 0.19765 | 0.00600 | 1.003414 | 0.485750 | 0.1608642 | 0.0903750 | 0.0704892 | 0.18075 | 0.090375 | 0.090375 | 0.1760500 | 0.0465 | 3.43071 | 0.892125 | 2.538585 | 2.956764 | 0.00000 | 0 | 0.00000 | 0 | 0.00000 | 0 | 0 | 0.4557721 | 0.1063125 | 2.394679 | 0.1845 | 0.3420 | 0.3420 | 0 | 0 | 30.94608 | 6.415462 | 5.464318 | 0 | 1 |
cee8c74d-51a2-4629-b92f-6bbdb5793fd6 | 2 | dbb278b0-b589-442a-88fd-9a68fd986a91 | 1 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 10 | 10 | 2 | 1246.7375 | 48.24150 | 55.36362 | 145.31270 | 2452.3924 | 0 | 96.00 | 0.0 | 71.76457 | 10.042250 | 831.9350 | 5.861650 | 186.70250 | 758.3275 | 2361.782 | 3808.492 | 4.948700 | 0.7704950 | 41.95375 | 155.40625 | 0.5238725 | 1.0762800 | 10.140018 | 1.4799800 | 306.3900 | 41.98000 | 264.4100 | 332.7700 | 0.421650 | 592.5575 | 275.4900 | 3394.180 | 750.6900 | 103.62000 | 7350.6575 | 1641.6150 | 7.406650 | 214.1842 | 135.8750 | 16.216413 | 0.4035600 | 0.1527600 | 0.1392600 | 0.2849400 | 0.2373300 | 1.5209750 | 8.760355 | 3.949800 | 17.413210 | 0.5344450 | 16.516858 | 0.0928200 | 0.00090 | 15.803205 | 14.12976 | 1.5046100 | 0.00090 | 0.0810300 | 0.000000 | 0.0065100 | 0.0089550 | 2.802000 | 256.0770 | 0.0000 | 0.0000 | 1.48800 | 0.0000 | 0.00000 | 1.48800 | 2.140250 | 0.618450 | 0.3484250 | 0.2520250 | 0.0964000 | 0.42190 | 0.096400 | 0.325500 | 0.7514750 | 0.1446 | 2.99510 | 0.079800 | 2.915300 | 2.903700 | 2.53890 | 0 | 0.00000 | 0 | 2.53890 | 0 | 0 | 0.3648000 | 0.0000000 | 0.000000 | 0.4820 | 0.0456 | 0.0456 | 0 | 0 | 19.24660 | 23.699800 | 5.198400 | 0 | 1 |
cee8c74d-51a2-4629-b92f-6bbdb5793fd7 | 2 | dbb278b0-b589-442a-88fd-9a68fd986a91 | 2 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 10 | 10 | 2 | 623.3687 | 24.12075 | 27.68181 | 72.65635 | 1226.1962 | 0 | 48.00 | 0.0 | 35.88229 | 5.021125 | 415.9675 | 2.930825 | 93.35125 | 379.1637 | 1180.891 | 1904.246 | 2.474350 | 0.3852475 | 20.97687 | 77.70312 | 0.2619362 | 0.5381400 | 5.070009 | 0.7399900 | 153.1950 | 20.99000 | 132.2050 | 166.3850 | 0.210825 | 296.2788 | 137.7450 | 1697.090 | 375.3450 | 51.81000 | 3675.3288 | 820.8075 | 3.703325 | 107.0921 | 67.9375 | 8.108206 | 0.2017800 | 0.0763800 | 0.0696300 | 0.1424700 | 0.1186650 | 0.7604875 | 4.380178 | 1.974900 | 8.706605 | 0.2672225 | 8.258429 | 0.0464100 | 0.00045 | 7.901603 | 7.06488 | 0.7523050 | 0.00045 | 0.0405150 | 0.000000 | 0.0032550 | 0.0044775 | 1.401000 | 128.0385 | 0.0000 | 0.0000 | 0.74400 | 0.0000 | 0.00000 | 0.74400 | 1.070125 | 0.309225 | 0.1742125 | 0.1260125 | 0.0482000 | 0.21095 | 0.048200 | 0.162750 | 0.3757375 | 0.0723 | 1.49755 | 0.039900 | 1.457650 | 1.451850 | 1.26945 | 0 | 0.00000 | 0 | 1.26945 | 0 | 0 | 0.1824000 | 0.0000000 | 0.000000 | 0.2410 | 0.0228 | 0.0228 | 0 | 0 | 9.62330 | 11.849900 | 2.599200 | 0 | 1 |
1f9daf51-8540-4fef-9f49-fe56c4b1ac54 | 3 | f0115426-e6f8-4c6f-aeaa-065c615c85bd | 1 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 14 | 14 | 2 | 2206.4860 | 65.89972 | 100.11426 | 267.77062 | 1770.4026 | 0 | 0.00 | 0.0 | 123.37104 | 16.349200 | 1136.0940 | 18.384940 | 221.62600 | 1205.8780 | 2440.166 | 4415.830 | 11.695100 | 0.7360300 | 68.76180 | 208.30220 | 1.8280460 | 2.2464920 | 29.188010 | 2.7669520 | 437.1660 | 160.00000 | 277.1660 | 553.6660 | 6.074620 | 821.8680 | 751.6020 | 637.836 | 125.8860 | 303.95200 | 100.6600 | 1051.0980 | 11.616760 | 117.3554 | 219.8120 | 26.972348 | 0.0040000 | 0.0024000 | 0.0108500 | 0.0122500 | 0.0100900 | 1.4957080 | 16.320104 | 7.901016 | 41.234728 | 1.8123080 | 38.692992 | 0.3343900 | 0.00184 | 22.686492 | 20.30833 | 1.9270220 | 0.00380 | 0.1777100 | 0.012290 | 0.0056700 | 0.0158500 | 4.339800 | 279.7190 | 3.4282 | 3.2986 | 1.88170 | 0.9936 | 0.00000 | 0.88810 | 2.800000 | 0.000000 | 0.3960000 | 0.0000000 | 0.3960000 | 0.75400 | 0.490000 | 0.264000 | 1.6500000 | 0.0000 | 5.48100 | 0.272000 | 5.209000 | 6.792320 | 6.36552 | 0 | 2.75562 | 0 | 3.60990 | 0 | 0 | 0.2560000 | 0.0000000 | 0.170800 | 0.0000 | 0.0560 | 0.0560 | 0 | 0 | 29.05440 | 49.324960 | 17.793340 | 0 | 1 |
1f9daf51-8540-4fef-9f49-fe56c4b1ac55 | 3 | f0115426-e6f8-4c6f-aeaa-065c615c85bd | 2 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 14 | 14 | 2 | 1103.2430 | 32.94986 | 50.05713 | 133.88531 | 885.2013 | 0 | 0.00 | 0.0 | 61.68552 | 8.174600 | 568.0470 | 9.192470 | 110.81300 | 602.9390 | 1220.083 | 2207.915 | 5.847550 | 0.3680150 | 34.38090 | 104.15110 | 0.9140230 | 1.1232460 | 14.594005 | 1.3834760 | 218.5830 | 80.00000 | 138.5830 | 276.8330 | 3.037310 | 410.9340 | 375.8010 | 318.918 | 62.9430 | 151.97600 | 50.3300 | 525.5490 | 5.808380 | 58.6777 | 109.9060 | 13.486174 | 0.0020000 | 0.0012000 | 0.0054250 | 0.0061250 | 0.0050450 | 0.7478540 | 8.160052 | 3.950508 | 20.617364 | 0.9061540 | 19.346496 | 0.1671950 | 0.00092 | 11.343246 | 10.15416 | 0.9635110 | 0.00190 | 0.0888550 | 0.006145 | 0.0028350 | 0.0079250 | 2.169900 | 139.8595 | 1.7141 | 1.6493 | 0.94085 | 0.4968 | 0.00000 | 0.44405 | 1.400000 | 0.000000 | 0.1980000 | 0.0000000 | 0.1980000 | 0.37700 | 0.245000 | 0.132000 | 0.8250000 | 0.0000 | 2.74050 | 0.136000 | 2.604500 | 3.396160 | 3.18276 | 0 | 1.37781 | 0 | 1.80495 | 0 | 0 | 0.1280000 | 0.0000000 | 0.085400 | 0.0000 | 0.0280 | 0.0280 | 0 | 0 | 14.52720 | 24.662480 | 8.896670 | 0 | 1 |
ASA24 detailed food data for all foods consumed by each individual
RecallRecId | UserName | UserID | RecallNo | RecallAttempt | RecallStatus | IntakeStartDateTime | IntakeEndDateTime | ReportingDate | Lang | Occ_No | Occ_Time | Occ_Name | EatWith | WatchTVuseComputer | Location | FoodNum | FoodType | FoodSrce | CodeNum | FoodCode | ModCode | HowMany | SubCode | PortionCode | FoodAmt | KCAL | PROT | TFAT | CARB | MOIS | ALC | CAFF | THEO | SUGR | FIBE | CALC | IRON | MAGN | PHOS | POTA | SODI | ZINC | COPP | SELE | VC | VB1 | VB2 | NIAC | VB6 | FOLA | FA | FF | FDFE | VB12 | VARA | RET | BCAR | ACAR | CRYP | LYCO | LZ | ATOC | VK | CHOLE | SFAT | S040 | S060 | S080 | S100 | S120 | S140 | S160 | S180 | MFAT | M161 | M181 | M201 | M221 | PFAT | P182 | P183 | P184 | P204 | P205 | P225 | P226 | VITD | CHOLN | VITE_ADD | B12_ADD | F_TOTAL | F_CITMLB | F_OTHER | F_JUICE | V_TOTAL | V_DRKGR | V_REDOR_TOTAL | V_REDOR_TOMATO | V_REDOR_OTHER | V_STARCHY_TOTAL | V_STARCHY_POTATO | V_STARCHY_OTHER | V_OTHER | V_LEGUMES | G_TOTAL | G_WHOLE | G_REFINED | PF_TOTAL | PF_MPS_TOTAL | PF_MEAT | PF_CUREDMEAT | PF_ORGAN | PF_POULT | PF_SEAFD_HI | PF_SEAFD_LOW | PF_EGGS | PF_SOY | PF_NUTSDS | PF_LEGUMES | D_TOTAL | D_MILK | D_YOGURT | D_CHEESE | OILS | SOLID_FATS | ADD_SUGARS | A_DRINKS | FoodComp | Food_Description |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 1 | 1 | Supermarket or grocery store | 1 | 51180010 | 0 | 0.5 | 0 | 62015 | 34.5 | 91.08 | 3.6432 | 0.4554 | 18.0711 | 11.66445 | 0 | 0.0 | 0.0 | 2.90835 | 0.552 | 36.225 | 1.23165 | 10.005 | 34.155 | 36.915 | 145.59 | 0.28635 | 0.04416 | 7.4175 | 0.00 | 0.19596 | 0.11868 | 1.557675 | 0.02415 | 36.57 | 28.29 | 8.28 | 56.235 | 0.0000 | 0.00 | 0.00 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0345 | 0.069 | 0.0 | 0.1242 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.00138 | 0.078315 | 0.039675 | 0.13455 | 0.002415 | 0.06417 | 0.001725 | 0 | 0.18147 | 0.173535 | 0.00828 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 0.00 | 5.037 | 0.0000 | 0.0000 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 1.45935 | 0 | 1.45935 | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.0000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.0000 | 0.000 | 0.39675 | 0 | 1 | Bagel |
960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 2 | 1 | Supermarket or grocery store | 2 | 31105030 | 0 | 1.0 | 0 | 61238 | 40.0 | 86.00 | 5.3080 | 6.8960 | 0.3040 | 26.72800 | 0 | 0.0 | 0.0 | 0.15600 | 0.000 | 23.600 | 0.74400 | 5.200 | 83.600 | 58.400 | 182.80 | 0.54400 | 0.03040 | 12.9600 | 0.00 | 0.01440 | 0.18360 | 0.030000 | 0.06840 | 14.80 | 0.00 | 14.80 | 14.800 | 0.3200 | 67.60 | 67.60 | 0.0 | 0 | 4 | 0 | 212.4 | 0.7800 | 3.520 | 157.2 | 1.7148 | 0.0016 | 0.0000 | 0.0016 | 0.0024 | 0.000 | 0.01400 | 1.223600 | 0.434800 | 2.75160 | 0.095200 | 2.62440 | 0.023200 | 0 | 1.99360 | 1.697200 | 0.16640 | 0 | 0.0796 | 0 | 0.0028 | 0.0244 | 0.84 | 105.520 | 0.0000 | 0.0000 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0.00000 | 0 | 0.00000 | 0.7600 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.76 | 0 | 0.0000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 2.8800 | 1.796 | 0.00000 | 0 | 1 | Egg, whole, fried with oil |
960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 3 | 1 | Supermarket or grocery store | 3 | 41205070 | 0 | 2.0 | 0 | 21000 | 30.0 | 78.00 | 2.4540 | 5.3340 | 5.9580 | 15.44700 | 0 | 0.0 | 0.0 | 0.87300 | 1.770 | 33.900 | 1.00800 | 13.500 | 70.800 | 75.300 | 144.30 | 0.52200 | 0.15300 | 2.6700 | 1.35 | 0.09150 | 0.03870 | 0.408900 | 0.03660 | 33.90 | 0.00 | 33.90 | 33.900 | 0.0000 | 0.30 | 0.00 | 5.1 | 0 | 0 | 0 | 0.6 | 0.3270 | 1.710 | 0.0 | 0.7287 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 0.000 | 0.00840 | 0.515400 | 0.172800 | 2.56620 | 0.032400 | 2.52060 | 0.009900 | 0 | 1.75350 | 1.707600 | 0.04440 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 0.00 | 8.640 | 0.0000 | 0.0000 | 0.012 | 0 | 0 | 0.012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.093 | 0.00000 | 0 | 0.00000 | 0.3660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.3660 | 0.369 | 0.000 | 0.000 | 0 | 0 | 3.9450 | 0.087 | 0.00000 | 0 | 1 | Hummus, plain |
960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 4 | 1 | Not applicable | 4 | 94000100 | 0 | 32.0 | 0 | 30000 | 960.0 | 0.00 | 0.0000 | 0.0000 | 0.0000 | 959.04000 | 0 | 0.0 | 0.0 | 0.00000 | 0.000 | 28.800 | 0.00000 | 9.600 | 0.000 | 0.000 | 38.40 | 0.09600 | 0.09600 | 0.0000 | 0.00 | 0.00000 | 0.00000 | 0.000000 | 0.00000 | 0.00 | 0.00 | 0.00 | 0.000 | 0.0000 | 0.00 | 0.00 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0000 | 0.000 | 0.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.00000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0 | 0.00000 | 0.000000 | 0.00000 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 0.00 | 0.000 | 0.0000 | 0.0000 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0.00000 | 0 | 0.00000 | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.0000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.0000 | 0.000 | 0.00000 | 0 | 1 | Water, tap |
960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 5 | 1 | Supermarket or grocery store | 5 | 92306800 | 0 | 6.0 | 0 | 30000 | 180.0 | 90.00 | 2.7900 | 1.7640 | 16.1640 | 158.67000 | 0 | 16.2 | 1.8 | 15.87600 | 0.180 | 102.600 | 0.07200 | 12.600 | 77.400 | 151.200 | 39.60 | 0.37800 | 0.02340 | 2.7000 | 0.00 | 0.03420 | 0.16560 | 0.081000 | 0.03240 | 9.00 | 0.00 | 9.00 | 9.000 | 0.4140 | 45.00 | 45.00 | 3.6 | 0 | 0 | 0 | 0.0 | 0.0360 | 0.180 | 7.2 | 1.0728 | 0.0504 | 0.0378 | 0.0306 | 0.0414 | 0.045 | 0.18000 | 0.468000 | 0.203400 | 0.46260 | 0.012600 | 0.44100 | 0.000000 | 0 | 0.09000 | 0.061200 | 0.02880 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 1.08 | 13.680 | 0.0000 | 0.0000 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0.00000 | 0 | 0.00000 | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.0000 | 0.000 | 0.342 | 0.342 | 0 | 0 | 0.0000 | 1.206 | 2.75400 | 0 | 1 | Tea, hot, chai, with milk |
960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 6 | 2 | Supermarket or grocery store | 6 | 11350020 | 0 | 0.5 | 0 | 10205 | 122.0 | 18.30 | 0.7198 | 1.3420 | 0.7076 | 118.40100 | 0 | 0.0 | 0.0 | 0.00000 | 0.000 | 240.340 | 0.42700 | 8.540 | 12.200 | 81.740 | 86.62 | 0.08540 | 0.03538 | 0.2440 | 0.00 | 0.07320 | 0.05734 | 0.091500 | 0.01830 | 1.22 | 0.00 | 1.22 | 1.220 | 0.7686 | 52.46 | 52.46 | 0.0 | 0 | 0 | 0 | 0.0 | 3.4282 | 0.000 | 0.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.00000 | 0.000000 | 0.000000 | 0.86376 | 0.007320 | 0.85644 | 0.000000 | 0 | 0.28792 | 0.287920 | 0.00000 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 1.22 | 0.000 | 3.4282 | 0.7686 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0.00000 | 0 | 0.00000 | 0.1708 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.1708 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.7686 | 0.000 | 0.00000 | 0 | 1 | Almond milk, unsweetened |
DHQ3 data format:
DHQ3 dietary data for each individual
Respondent ID | Record Number | Sex (1=male; 2=female) | Age | Questionnaire Date (YYYYMMDD) | Gram weight (g) | Energy (kcal) | *Gluten (g) | Alcohol (g) | Protein (g) | *Nitrogen (g) | *Total protein (g) | *Animal protein (g) | *Vegetable protein (g) | Total fat (g) | *Solid fat (g) | Total saturated fatty acids (g) | Total monounsaturated fatty acids (g) | Total polyunsaturated fatty acids (g) | *Total saturated fatty acids (g) | *Total monounsaturated fatty acids (g) | *Total polyunsaturated fatty acids (g) | *Polyunsaturated to saturated fatty acid ratio | Cholesterol (mg) | *Cholesterol to saturated fatty acid index | Carbohydrate (g) | Total sugars (g) | *Total sugars (g) | *Added sugars (g) | *Added sugars by total sugars (g) | *Available carbohydrate (g) | *Glycemic load (glucose reference) | *Glycemic load (bread reference) | *Fructose (g) | *Galactose (g) | *Glucose (g) | *Lactose (g) | *Maltose (g) | *Sucrose (g) | *Starch (g) | Dietary fiber (g) | *Total dietary fiber (g) | *Soluble dietary fiber (g) | *Insoluble dietary fiber (g) | *Pectins (g) | Retinol (mcg) | *Total vitamin A activity (International Units) (IU) | Vitamin A, retinol activity (mcg) | *Total vitamin A activity (RE) (mcg) | Beta-carotene (mcg) | *Beta-carotene (mcg) | Alpha-carotene (mcg) | Beta-cryptoxanthin (mcg) | Lutein + zeaxanthin (mcg) | Lycopene (mcg) | Vitamin E as alpha-tocopherol (mg) | *Vitamin E (Alpha Tocopherol) (mg) | Added alpha-tocopherol (mg) | *Total alpha-tocopherol (mg) | *Beta-tocopherol (mg) | *Gamma-tocopherol (mg) | *Delta-tocopherol (mg) | *Vitamin E (International Units) (IU) | *Natural alpha-tocopherol (RRR-alpha-tocopherol or d-alpha-tocopherol) (mg) | *Synthetic alpha-tocopherol (all rac-alpha-tocopherol or dl-alpha-tocopherol) (mg) | Vitamin K (mcg) | Vitamin C (mg) | Thiamin (Vitamin B1) (mg) | Riboflavin (Vitamin B2) (mg) | Niacin (mg) | *Niacin (mg) | Vitamin B6 (mg) | Total folate (mcg) | Folate, dietary folate (mcg) | Food folate (mcg) | Folic acid (mcg) | Vitamin B12 (mcg) | Added vitamin B12 (mcg) | *Pantothenic acid (mg) | Vitamin D (D2 + D3) (mcg) | *Vitamin D (calciferol) (mcg) | *Vitamin D (ergocalciferol) (mcg) | *Vitamin D (cholecalciferol (mcg) | Calcium (mg) | Phosphorus (mg) | Magnesium (mg) | Iron (mg) | Zinc (mg) | Copper (mg) | Selenium (mcg) | Sodium (mg) | Potassium (mg) | *Manganese (mg) | SFA 4:0 (Butanoic) (g) | SFA 6:0 (Hexanoic) (g) | SFA 8:0 (Octanoic) (g) | SFA 10:0 (Decanoic) (g) | SFA 12:0 (Dodecanoic) (g) | SFA 14:0 (Tetradecanoic) (g) | SFA 16:0 (Hexadecanoic) (g) | *SFA 17:0 (margaric acid) (g) | SFA 18:0 (Octadecanoic) (g) | *SFA 20:0 (arachidic acid) (g) | *SFA 22:0 (behenic acid) (g) | MFA 16:1 (Hexadecenoic) (g) | MFA 18:1 (Octadecenoic) (g) | MFA 20:1 (Eicosenoic) (g) | MFA 22:1 (Docosenoic) (g) | *MFA 14:1 (Myristoleic) (g) | PFA 18:2 (Octadecadienoic) (g) | PFA 18:3 (Octadecatrienoic) (g) | *PFA 18:3 N3 (Alpha linolenic) (g) | PFA 18:4 (Octadecatetraenoic) (g) | PFA 20:4 (Eicosatetraenoic) (g) | PFA 20:5 (Eicosapentaenoic) (g) | PFA 22:5 (Docosapentaenoic) (g) | PFA 22:6 (Docosahexaenoic) (g) | *Trans 18:1 (Trans-octadecenoic acid [elaidic acid]) (g) | *Trans 18:2 (Trans-octadecadienoic acid [linolelaidic acid]; incl. c-t, t-c, t-t) (g) | *Trans 16:1 (Trans-hexadecenoic acid) (g) | *Total trans fatty acitds (g) | *Omega-3 fatty acids (g) | *CLA 18:2 (Linoleic) (g) | *CLA cis9 trans11 (g) | *CLA trans10 cis12 (g) | *Tryptophan (g) | *Threonine (g) | *Isoleucine (g) | *Leucine (g) | *Lysine (g) | *Methionine (g) | *Cystine (g) | *Phenylalanine (g) | *Tyrosine (g) | *Valine (g) | *Arginine (g) | *Histidine (g) | *Alanine (g) | *Aspartic acid (g) | *Glutamin acid (g) | *Glycine (g) | *Proline (g) | *Serine (g) | *Daidzein (mg) | *Genistein (mg) | *Glycitein (mg) | *Coumestrol (mg) | *Biochanin A (mg) | *Formononetin (mg) | *Erythritol (g) | *Inositol (g) | *Isomalt (g) | *Lactitol (g) | *Maltitol (g) | *Mannitol (g) | *Pinitol (g) | *Sorbitol (g) | *Xylitol (g) | Caffeine (mg) | Theobromine (mg) | Moisture (g) | *Water (g) | Total Choline (mg) | *Aspartame (mg) | *Saccharin (mg) | *Phytic acid (mg) | *Oxalic acid (mg) | *3-Methylhistidine (mg) | *Sucrose polyester (g) | *Ash (g) | *Acesulfame potassium (mg) | *Sucralose (mg) | *Tagatose (g) | *Betaine (mg) | Citrus, melon, berry fruit (cups) | Other fruit (cups) | Fruits (cups) | Juice fruit (cups) | Total fruit (cups) | Dark-green vegetable (cups) | Red/orange tomato vegetable (cups) | Red/orange other vegetable (cups) | Total red/orange vegetable (cups) | White potato starchy vegetable (cups) | Other starchy vegetable (cups) | Total starchy vegetable (cups) | Other vegetable (cups) | Total vegetable (cups) | Legumes vegetable (cups) | Whole grain (oz) | Refined grain (oz) | Total number of grain (oz) | Meat from beef, pork, veal, lamb, and game protein foods (oz) | Cured meat protein foods (oz) | Meat from organ meat protein foods (oz) | Poultry protein foods (oz) | Seafood high in omega-3 protein foods (oz) | Seafood low in omega-3 protein foods (oz) | Seafood (oz) | Total meat, poultry, seafood protein foods (oz) | Eggs protein foods (oz) | Meat, poultry, and eggs (oz) | Soy products protein foods (oz) | Nuts and seeds protein foods (oz) | Legumes protein foods (oz) | Nuts, seeds, soy, and legumes (oz) | Total protein foods (oz) | Milk (cups) | Yogurt (cups) | Cheese (cups) | Total dairy (cups) | Oil (g) | Solid fat (g) | Added sugars (tsp) | Alcohol (drink(s)) | Energy from fat (% kcal) | Energy from carbohydrates (% kcal) | Energy from protein (% kcal) | Energy from alcohol (% kcal) | Energy from saturated fatty acids (% kcal) | Energy from monounsaturated fatty acids (% kcal) | Energy from polyunsaturated fatty acids (% kcal) | SUPP_ENERGY_KCAL_DSID | SUPP_PROTEIN_G_DSID | SUPP_TOTAL_FAT_G_DSID | SUPP_TOTAL_POLYUNSATURATED_FATTY_ACIDS_G_DSID | SUPP_CHOLESTEROL_MG_DSID | SUPP_CARBOHYDRATE_G_DSID | SUPP_TOTAL_SUGARS_G_DSID | SUPP_DIETARY_FIBER_G_DSID | SUPP_SOLUBLE_DIETARY_FIBER_G_DSID | SUPP_TOTAL_VITAMIN_A_ACTIVITY_IU_DSID | SUPP_VITAMIN_A_RAE_MCG_DSID | SUPP_BETA_CAROTENE_PERCENT_DSID | SUPP_LUTEIN_ZEAXANTHIN_MCG_DSID | SUPP_LYCOPENE_MCG_DSID | SUPP_BIOTIN_MCG_DSID | SUPP_VITAMIN_E_AS_ALPHA_TOCOPHEROL_MG_DSID | SUPP_VITAMIN_E_IU_DSID | SUPP_VITAMIN_K_MCG_DSID | SUPP_VITAMIN_C_MG_DSID | SUPP_THIAMIN_VITAMIN_B1_MG_DSID | SUPP_RIBOFLAVIN_VITAMIN_B2_MG_DSID | SUPP_NIACIN_MG_DSID | SUPP_VITAMIN_B6_MG_DSID | SUPP_FOLATE_DFE_MCG_DSID | SUPP_FOLIC_ACID_MCG_DSID | SUPP_VITAMIN_B12_MCG_DSID | SUPP_PANTOTHENIC_ACID_MG_DSID | SUPP_VITAMIN_D_D2+D3_MCG_DSID | SUPP_BORON_MCG_DSID | SUPP_CALCIUM_MG_DSID | SUPP_CHLORIDE_MG_DSID | SUPP_CHROMIUM_MCG_DSID | SUPP_COPPER_MG_DSID | SUPP_FLUORIDE_MG_DSID | SUPP_IODINE_MCG_DSID | SUPP_IRON_MG_DSID | SUPP_MAGNESIUM_MG_DSID | SUPP_MANGANESE_MG_DSID | SUPP_MOLYBDENUM_MCG_DSID | SUPP_NICKEL_MCG_DSID | SUPP_PHOSPHORUS_MG_DSID | SUPP_POTASSIUM_MG_DSID | SUPP_SELENIUM_MCG_DSID | SUPP_SILICON_MG_DSID | SUPP_SODIUM_MG_DSID | SUPP_TIN_MCG_DSID | SUPP_VANADIUM_MCG_DSID | SUPP_ZINC_MG_DSID | SUPP_PFA_20_5_EICOSAPENTAENOIC_ACID_G_DSID | SUPP_PFA_22_6_DOCOSAHEXAENOIC_ACID_G_DSID | SUPP_OMEGA_3_FATTY_ACIDS_G_DSID | SUPP_INOSITOL_G_DSID | SUPP_CHOLINE_MG_DSID | Total HEI-2015 Score | HEI-2015 - Total Vegetables - Component Score | HEI-2015 - Greens and Beans - Component Score | HEI-2015 - Total Fruits - Component Score | HEI-2015 - Whole Fruits - Component Score | HEI-2015 - Whole Grains - Component Score | HEI-2015 - Dairy - Component Score | HEI-2015 - Total Protein Foods - Component Score | HEI-2015 - Seafood and Plant Proteins - Component Score | HEI-2015 - Fatty Acids - Component Score | HEI-2015 - Sodium - Component Score | HEI-2015 - Refined Grains - Component Score | HEI-2015 - Saturated Fats - Component Score | HEI-2015 - Added Sugars - Component Score | HEI-2015 - Density of Total Vegetables per 1000 Kcal | HEI-2015 - Density of Greens and Beans per 1000 Kcal | HEI-2015 - Density of Total Fruits per 1000 Kcal | HEI-2015 - Density of Whole Fruits per 1000 Kcal | HEI-2015 - Density of Whole Grains per 1000 Kcal | HEI-2015 - Density of Dairy per 1000 Kcal | HEI-2015 - Density of Total Protein Foods per 1000 Kcal | HEI-2015 - Density of Seafood and Plant Proteins per 1000 Kcal | HEI-2015 - Fatty Acid Ratio | HEI-2015 - Density of Sodium per 1000 Kcal | HEI-2015 - Density of Refined Grains per 1000 Kcal | HEI-2015 - Percent of Calories from Saturated Fats | HEI-2015 - Percent of Calories from Added Sugars |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 24 | 20220108 | 3898.66 | 1849.01 | 5.09 | 0.00 | 87.88 | 14.25 | 88.38 | 54.11 | 34.27 | 75.11 | 27.64 | 22.48 | 27.15 | 18.85 | 23.57 | 24.38 | 19.52 | 19.98 | 238.41 | 35.57 | 209.48 | 51.82 | 51.61 | 16.87 | 13.67 | 192.49 | 108.61 | 155.30 | 10.56 | 0.19 | 11.59 | 12.31 | 1.66 | 14.98 | 125.49 | 22.13 | 23.35 | 5.53 | 17.81 | 3.07 | 251.24 | 13821.42 | 833.93 | 1566.50 | 6627.53 | 7739.48 | 650.51 | 75.45 | 7224.13 | 3568.97 | 7.76 | 7.61 | 0.00 | 9.69 | 0.44 | 18.51 | 5.05 | 11.33 | 7.61 | 0.00 | 398.50 | 77.83 | 2.15 | 1.80 | 25.98 | 42.49 | 2.05 | 436.72 | 528.47 | 306.57 | 130.27 | 4.40 | 0.26 | 4.85 | 4.97 | 5.26 | 0.01 | 5.26 | 966.28 | 1321.90 | 437.24 | 14.61 | 13.36 | 1.47 | 123.76 | 3360.72 | 2787.80 | 4.59 | 0.33 | 0.20 | 0.31 | 0.43 | 1.14 | 1.90 | 12.10 | 0.08 | 5.38 | 0.13 | 0.10 | 0.99 | 25.39 | 0.33 | 0.05 | 0.16 | 15.32 | 3.16 | 3.09 | 0.01 | 0.11 | 0.04 | 0.02 | 0.07 | 2.05 | 0.36 | 0.04 | 2.47 | 3.27 | 0.11 | 0.08 | 0.03 | 1.00 | 3.51 | 3.94 | 6.93 | 6.20 | 1.97 | 1.11 | 3.96 | 2.99 | 4.62 | 5.18 | 2.62 | 4.44 | 8.20 | 15.80 | 3.85 | 4.93 | 4.10 | 1.58 | 2.08 | 0.33 | 0.06 | 0.47 | 0.00 | 0.00 | 0.41 | 0 | 0 | 0 | 0.18 | 0.01 | 0.15 | 0.02 | 181.66 | 11.75 | 3507.29 | 3531.87 | 354.78 | 25.12 | 0.00 | 849.95 | 326.50 | 21.94 | 0.00 | 16.67 | 4.21 | 0.54 | 0.39 | 140.98 | 0.31 | 0.62 | 0.93 | 0.00 | 0.93 | 0.53 | 0.17 | 0.17 | 0.34 | 0.09 | 0.10 | 0.17 | 0.67 | 1.72 | 0.54 | 2.29 | 3.94 | 6.23 | 4.42 | 0.30 | 0.01 | 0.26 | 0.27 | 0.18 | 0.45 | 5.47 | 0.33 | 5.32 | 0.38 | 0.09 | 2.18 | 2.65 | 6.26 | 0.96 | 0.04 | 0.15 | 1.14 | 31.12 | 23.51 | 3.29 | 0.00 | 36.56 | 45.32 | 19.01 | 0.00 | 10.94 | 13.22 | 9.18 | 0.00 | 0 | 0.00 | 0.00 | 114.29 | 0.00 | 0.00 | 0 | 0 | 1000.00 | 300.00 | 8.29 | 0.00 | 0 | 8.57 | 5.74 | 8.57 | 7.14 | 17.14 | 0.43 | 0.49 | 5.71 | 0.57 | 194.29 | 114.29 | 1.71 | 2.86 | 2.86 | 21.43 | 57.14 | 20.57 | 10.00 | 0.14 | 0 | 42.86 | 5.14 | 14.29 | 0.66 | 12.86 | 1.43 | 5.71 | 22.86 | 15.71 | 0.57 | 0 | 2.86 | 2.86 | 3.14 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 74.69 | 5.00 | 5.00 | 3.16 | 5.00 | 8.25 | 4.76 | 5.00 | 5.00 | 6.51 | 2.03 | 8.67 | 6.32 | 10.00 | 1.23 | 0.58 | 0.50 | 0.50 | 1.24 | 0.62 | 4.57 | 1.67 | 2.05 | 1.82 | 2.13 | 10.94 | 2.85 |
2 | 2 | 2 | 24 | 20220126 | 2371.25 | 1109.42 | 6.13 | 0.00 | 38.77 | 6.63 | 39.97 | 9.76 | 30.21 | 44.95 | 11.37 | 10.65 | 17.96 | 13.01 | 10.57 | 15.58 | 13.88 | 13.52 | 138.93 | 17.47 | 146.33 | 39.47 | 38.56 | 12.39 | 10.83 | 121.57 | 67.11 | 95.94 | 9.92 | 0.12 | 10.03 | 1.68 | 2.27 | 14.14 | 74.37 | 20.13 | 21.16 | 5.24 | 15.93 | 2.65 | 220.55 | 11657.31 | 734.01 | 1301.83 | 5879.28 | 6585.29 | 496.10 | 82.43 | 2800.94 | 2671.64 | 7.66 | 8.79 | 1.49 | 10.60 | 0.76 | 10.59 | 2.44 | 13.36 | 8.45 | 0.77 | 138.07 | 68.13 | 1.33 | 1.03 | 12.53 | 20.05 | 1.43 | 373.02 | 468.66 | 236.34 | 136.78 | 1.64 | 0.99 | 2.82 | 1.75 | 1.80 | 0.27 | 1.53 | 563.58 | 718.57 | 233.49 | 11.96 | 6.85 | 1.11 | 51.72 | 1841.31 | 1724.09 | 3.64 | 0.12 | 0.07 | 0.10 | 0.14 | 0.40 | 0.63 | 6.17 | 0.04 | 2.39 | 0.19 | 0.29 | 0.36 | 17.20 | 0.21 | 0.00 | 0.03 | 11.53 | 1.31 | 1.30 | 0.00 | 0.07 | 0.00 | 0.01 | 0.02 | 0.81 | 0.16 | 0.02 | 0.99 | 1.32 | 0.02 | 0.02 | 0.00 | 0.48 | 1.40 | 1.67 | 2.97 | 2.02 | 0.71 | 0.63 | 1.98 | 1.27 | 1.96 | 2.57 | 1.02 | 1.73 | 3.86 | 8.32 | 1.68 | 2.63 | 2.03 | 1.67 | 2.35 | 0.36 | 0.00 | 0.41 | 0.01 | 0.00 | 0.29 | 0 | 0 | 0 | 0.14 | 0.03 | 0.09 | 0.01 | 0.40 | 5.62 | 2129.17 | 2139.36 | 183.66 | 1.37 | 0.17 | 806.87 | 311.97 | 1.32 | 0.01 | 11.70 | 0.04 | 0.04 | 0.27 | 99.39 | 0.23 | 0.63 | 0.87 | 0.01 | 0.88 | 0.30 | 0.17 | 0.27 | 0.44 | 0.10 | 0.04 | 0.14 | 0.34 | 1.22 | 0.42 | 1.27 | 3.44 | 4.72 | 0.16 | 0.03 | 0.00 | 0.17 | 0.00 | 0.01 | 0.01 | 0.37 | 0.59 | 0.96 | 0.41 | 1.44 | 1.67 | 3.51 | 2.81 | 0.11 | 0.01 | 0.23 | 0.36 | 22.09 | 11.49 | 3.03 | 0.00 | 36.46 | 52.76 | 13.98 | 0.00 | 8.64 | 14.57 | 10.55 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 1.99 | 0.00 | 0.00 | 0.00 | 9.95 | 6.64 | 1.33 | 1.66 | 0.13 | 45.13 | 26.55 | 1.00 | 0.37 | 1.66 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 77.84 | 5.00 | 5.00 | 4.97 | 5.00 | 7.65 | 2.46 | 5.00 | 5.00 | 10.00 | 3.78 | 4.78 | 9.20 | 10.00 | 1.48 | 0.64 | 0.80 | 0.78 | 1.15 | 0.32 | 4.03 | 3.17 | 2.91 | 1.66 | 3.10 | 8.64 | 4.37 |
3 | 3 | 2 | 23 | 20220126 | 5364.16 | 2133.67 | 5.35 | 5.88 | 74.24 | 12.01 | 74.22 | 39.80 | 34.42 | 75.58 | 34.91 | 22.30 | 29.17 | 17.31 | 22.31 | 30.90 | 15.75 | 60.57 | 201.31 | 32.25 | 291.08 | 137.34 | 134.10 | 70.97 | 64.43 | 259.50 | 145.27 | 207.70 | 34.64 | 0.23 | 31.54 | 7.76 | 1.90 | 59.33 | 93.86 | 28.81 | 32.69 | 10.95 | 21.75 | 5.54 | 262.22 | 20258.83 | 1192.88 | 2184.25 | 9996.00 | 11679.51 | 2152.91 | 190.05 | 8073.37 | 16992.22 | 13.38 | 12.48 | 1.86 | 14.96 | 0.39 | 15.61 | 2.42 | 18.98 | 11.87 | 1.34 | 438.97 | 283.18 | 1.58 | 2.43 | 28.44 | 40.13 | 2.95 | 556.30 | 620.57 | 464.83 | 91.52 | 3.96 | 0.77 | 8.71 | 3.65 | 2.99 | 0.00 | 2.99 | 986.56 | 1320.70 | 411.69 | 14.16 | 11.09 | 1.74 | 86.98 | 3985.08 | 4446.37 | 6.33 | 0.50 | 0.29 | 0.20 | 0.44 | 0.48 | 1.91 | 12.47 | 0.12 | 5.09 | 0.17 | 0.15 | 1.01 | 26.96 | 0.27 | 0.01 | 0.15 | 15.18 | 1.74 | 1.62 | 0.01 | 0.10 | 0.03 | 0.02 | 0.07 | 3.32 | 0.45 | 0.06 | 3.84 | 1.80 | 0.12 | 0.10 | 0.02 | 0.83 | 2.85 | 3.10 | 5.40 | 4.69 | 1.47 | 0.91 | 3.12 | 2.31 | 3.56 | 4.20 | 1.90 | 3.55 | 7.19 | 13.93 | 3.12 | 4.37 | 3.19 | 0.65 | 0.75 | 0.09 | 0.30 | 0.69 | 0.01 | 0.13 | 0.79 | 0 | 0 | 0 | 0.57 | 0.02 | 0.55 | 0.03 | 555.54 | 50.94 | 4891.41 | 4927.34 | 360.63 | 3.81 | 0.01 | 796.90 | 365.39 | 12.98 | 0.03 | 22.95 | 5.07 | 6.65 | 0.52 | 134.98 | 0.74 | 0.60 | 1.34 | 1.19 | 2.53 | 0.74 | 0.83 | 0.40 | 1.22 | 0.66 | 0.43 | 1.09 | 1.17 | 4.22 | 0.34 | 0.73 | 3.15 | 3.87 | 1.55 | 0.82 | 0.00 | 0.79 | 0.33 | 0.34 | 0.67 | 3.85 | 0.25 | 3.41 | 0.07 | 0.61 | 1.35 | 2.03 | 4.78 | 0.33 | 0.16 | 0.43 | 0.93 | 29.19 | 29.73 | 15.61 | 0.42 | 31.88 | 54.57 | 13.92 | 1.93 | 9.40 | 12.31 | 7.30 | 15.00 | 0 | 0.00 | 0.00 | 800.00 | 3.00 | 3.00 | 0 | 0 | 2500.00 | 750.00 | 0.00 | 275.00 | 0 | 1015.00 | 10.10 | 15.00 | 0.00 | 530.00 | 0.00 | 0.00 | 10.00 | 4.00 | 680.00 | 400.00 | 1012.00 | 10.00 | 45.00 | 150.00 | 0.00 | 0.00 | 120.00 | 0.00 | 0 | 0.00 | 0.00 | 114.29 | 0.00 | 37.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 50.00 | 0.00 | 0.00 | 0.00 | 0 | 0.04 | 69.46 | 5.00 | 5.00 | 5.00 | 5.00 | 2.27 | 3.35 | 5.00 | 5.00 | 6.81 | 1.47 | 10.00 | 8.24 | 7.33 | 2.14 | 0.51 | 1.19 | 0.63 | 0.34 | 0.43 | 2.88 | 1.27 | 2.08 | 1.87 | 1.47 | 9.40 | 11.71 |
4 | 4 | 2 | 23 | 20220126 | 1937.19 | 1170.43 | 3.14 | 1.51 | 29.28 | 4.58 | 28.27 | 14.37 | 13.90 | 31.92 | 14.29 | 8.38 | 12.02 | 8.55 | 8.79 | 11.83 | 8.77 | 29.33 | 67.69 | 12.29 | 197.39 | 111.50 | 109.45 | 56.12 | 49.51 | 179.54 | 107.52 | 153.70 | 30.57 | 0.18 | 27.86 | 4.36 | 1.75 | 43.89 | 52.80 | 13.14 | 12.99 | 4.15 | 8.82 | 2.33 | 258.65 | 4888.50 | 435.15 | 668.06 | 1917.67 | 2394.84 | 272.32 | 146.77 | 1370.05 | 1989.07 | 9.57 | 10.03 | 5.24 | 13.52 | 0.35 | 8.00 | 1.25 | 16.42 | 7.95 | 4.62 | 72.78 | 183.72 | 1.09 | 1.24 | 17.12 | 19.88 | 2.06 | 322.73 | 437.01 | 159.52 | 163.20 | 3.50 | 2.25 | 4.50 | 3.67 | 2.61 | 0.50 | 2.11 | 824.13 | 654.44 | 183.48 | 11.41 | 6.96 | 0.74 | 35.28 | 1412.48 | 2052.53 | 2.51 | 0.16 | 0.09 | 0.07 | 0.14 | 0.22 | 0.63 | 4.69 | 0.03 | 2.02 | 0.06 | 0.04 | 0.32 | 11.38 | 0.11 | 0.01 | 0.03 | 7.78 | 0.59 | 0.59 | 0.01 | 0.03 | 0.02 | 0.01 | 0.04 | 1.80 | 0.22 | 0.01 | 2.04 | 0.68 | 0.04 | 0.03 | 0.01 | 0.31 | 1.03 | 1.15 | 2.05 | 1.71 | 0.58 | 0.36 | 1.21 | 0.90 | 1.38 | 1.62 | 0.71 | 1.41 | 2.80 | 5.35 | 1.20 | 1.85 | 1.24 | 0.13 | 0.17 | 0.03 | 0.08 | 0.05 | 0.01 | 0.10 | 0.53 | 0 | 0 | 0 | 0.14 | 0.00 | 0.62 | 0.02 | 6.67 | 7.19 | 1667.00 | 1679.93 | 125.70 | 5.98 | 0.45 | 401.48 | 115.24 | 4.35 | 0.06 | 8.57 | 4.60 | 7.74 | 0.92 | 75.51 | 0.54 | 0.39 | 0.93 | 1.40 | 2.33 | 0.16 | 0.08 | 0.08 | 0.15 | 0.53 | 0.05 | 0.58 | 0.21 | 1.11 | 0.03 | 0.80 | 1.73 | 2.53 | 0.42 | 0.26 | 0.00 | 0.31 | 0.17 | 0.24 | 0.41 | 1.41 | 0.11 | 1.09 | 0.02 | 0.26 | 0.13 | 0.42 | 1.80 | 0.14 | 0.11 | 0.17 | 0.44 | 14.94 | 9.93 | 11.87 | 0.11 | 24.54 | 67.46 | 10.01 | 0.90 | 6.44 | 9.24 | 6.58 | 15.00 | 0 | 0.00 | 0.00 | 800.00 | 3.00 | 3.00 | 0 | 0 | 2500.00 | 750.00 | 0.00 | 275.00 | 0 | 15.00 | 10.10 | 15.00 | 0.00 | 30.00 | 0.00 | 0.00 | 10.00 | 4.00 | 680.00 | 400.00 | 12.00 | 10.00 | 20.00 | 150.00 | 0.00 | 0.00 | 120.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 37.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.04 | 77.27 | 4.43 | 4.19 | 5.00 | 5.00 | 4.57 | 2.86 | 3.30 | 4.43 | 9.66 | 8.81 | 10.00 | 10.00 | 5.01 | 0.97 | 0.17 | 1.99 | 0.79 | 0.68 | 0.37 | 1.65 | 0.71 | 2.46 | 1.21 | 1.48 | 6.44 | 16.23 |
5 | 5 | 2 | 30 | 20220126 | 3578.55 | 1237.92 | 5.87 | 8.73 | 49.24 | 7.79 | 48.30 | 32.48 | 15.82 | 49.18 | 27.57 | 17.39 | 17.41 | 10.05 | 17.49 | 18.41 | 8.35 | 9.65 | 197.83 | 27.70 | 139.93 | 53.26 | 54.70 | 26.87 | 24.23 | 126.27 | 73.49 | 105.06 | 11.50 | 0.15 | 11.24 | 5.77 | 1.77 | 24.04 | 58.74 | 12.51 | 11.73 | 3.73 | 7.97 | 1.91 | 256.32 | 5398.06 | 454.31 | 718.86 | 2242.58 | 2703.33 | 202.94 | 53.34 | 1909.52 | 2940.11 | 5.22 | 5.91 | 0.31 | 7.31 | 0.19 | 7.87 | 1.89 | 8.97 | 5.49 | 0.93 | 118.51 | 56.61 | 0.91 | 1.20 | 12.60 | 22.08 | 1.16 | 256.09 | 323.94 | 159.13 | 97.04 | 2.25 | 0.17 | 2.91 | 2.08 | 2.57 | 0.01 | 2.56 | 743.55 | 843.68 | 200.67 | 7.83 | 5.99 | 0.92 | 69.94 | 2049.54 | 1540.33 | 1.62 | 0.48 | 0.26 | 0.20 | 0.42 | 0.53 | 1.72 | 9.15 | 0.10 | 3.99 | 0.10 | 0.09 | 0.68 | 16.12 | 0.15 | 0.00 | 0.10 | 8.81 | 0.96 | 0.81 | 0.01 | 0.08 | 0.01 | 0.01 | 0.04 | 2.41 | 0.32 | 0.04 | 2.78 | 0.90 | 0.08 | 0.07 | 0.01 | 0.60 | 1.88 | 2.21 | 3.83 | 3.15 | 1.08 | 0.64 | 2.16 | 1.68 | 2.49 | 2.40 | 1.29 | 2.18 | 4.18 | 9.66 | 1.82 | 3.41 | 2.26 | 0.29 | 0.45 | 0.06 | 0.02 | 0.08 | 0.00 | 0.00 | 0.21 | 0 | 0 | 0 | 0.32 | 0.00 | 0.27 | 0.02 | 15.74 | 24.79 | 3319.15 | 3334.35 | 201.59 | 0.89 | 0.10 | 338.68 | 104.73 | 6.80 | 0.02 | 12.60 | 0.15 | 0.02 | 0.75 | 82.83 | 0.15 | 0.95 | 1.10 | 0.12 | 1.22 | 0.37 | 0.14 | 0.06 | 0.20 | 0.07 | 0.08 | 0.14 | 0.28 | 0.98 | 0.06 | 0.29 | 3.85 | 4.14 | 0.46 | 0.17 | 0.00 | 0.87 | 0.07 | 0.31 | 0.38 | 1.94 | 0.57 | 2.06 | 0.07 | 0.27 | 0.24 | 0.58 | 2.86 | 0.19 | 0.17 | 0.85 | 1.24 | 14.61 | 24.71 | 5.58 | 0.63 | 35.75 | 45.21 | 15.91 | 4.94 | 12.64 | 12.66 | 7.31 | 4.29 | 0 | 0.00 | 0.00 | 228.57 | 0.86 | 0.86 | 0 | 0 | 714.29 | 214.29 | 0.00 | 78.57 | 0 | 4.29 | 2.89 | 4.29 | 0.00 | 8.57 | 0.00 | 0.00 | 2.86 | 1.14 | 194.29 | 114.29 | 3.43 | 2.86 | 5.71 | 42.86 | 0.00 | 0.00 | 34.29 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 10.71 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.01 | 63.23 | 3.84 | 5.00 | 5.00 | 5.00 | 1.55 | 7.69 | 4.98 | 4.83 | 2.92 | 3.83 | 4.76 | 4.20 | 9.63 | 0.84 | 0.35 | 0.98 | 0.89 | 0.23 | 1.00 | 2.49 | 0.77 | 1.58 | 1.66 | 3.11 | 12.64 | 7.21 |
6 | 6 | 2 | 30 | 20220126 | 3412.63 | 758.65 | 0.67 | 1.88 | 20.20 | 3.41 | 20.92 | 9.99 | 10.93 | 31.40 | 6.18 | 6.80 | 14.63 | 8.28 | 6.93 | 13.41 | 8.62 | 20.26 | 129.62 | 13.58 | 95.41 | 10.13 | 10.07 | 3.96 | 3.50 | 93.36 | 58.50 | 83.65 | 2.00 | 0.03 | 2.64 | 0.89 | 0.16 | 4.34 | 69.59 | 4.73 | 5.53 | 1.82 | 3.70 | 0.63 | 83.94 | 4063.41 | 261.56 | 467.80 | 1956.21 | 2253.71 | 341.29 | 18.72 | 2132.81 | 1167.57 | 4.22 | 3.88 | 0.11 | 4.87 | 0.34 | 7.58 | 2.03 | 5.82 | 3.82 | 0.14 | 113.93 | 22.91 | 0.67 | 0.55 | 7.69 | 12.24 | 0.66 | 202.32 | 283.54 | 87.75 | 114.94 | 0.77 | 0.10 | 2.44 | 1.13 | 1.10 | 0.00 | 1.10 | 309.88 | 369.15 | 146.88 | 5.39 | 3.43 | 0.65 | 40.47 | 1340.90 | 829.81 | 2.95 | 0.05 | 0.02 | 0.07 | 0.09 | 0.37 | 0.33 | 4.15 | 0.02 | 1.43 | 0.09 | 0.06 | 0.31 | 14.14 | 0.12 | 0.00 | 0.01 | 6.81 | 1.33 | 1.33 | 0.00 | 0.06 | 0.00 | 0.00 | 0.03 | 0.59 | 0.10 | 0.01 | 0.71 | 1.37 | 0.01 | 0.01 | 0.00 | 0.24 | 0.83 | 0.93 | 1.64 | 1.21 | 0.49 | 0.34 | 0.98 | 0.72 | 1.13 | 1.39 | 0.55 | 1.12 | 1.95 | 3.70 | 0.89 | 1.04 | 1.05 | 0.10 | 0.10 | 0.01 | 0.04 | 0.00 | 0.00 | 0.00 | 0.13 | 0 | 0 | 0 | 0.09 | 0.00 | 0.03 | 0.01 | 152.97 | 11.60 | 3255.11 | 3266.47 | 125.21 | 0.43 | 0.00 | 313.46 | 110.63 | 2.68 | 0.00 | 6.36 | 0.30 | 0.52 | 0.07 | 38.48 | 0.01 | 0.08 | 0.09 | 0.07 | 0.16 | 0.17 | 0.09 | 0.07 | 0.15 | 0.01 | 0.01 | 0.02 | 0.19 | 0.51 | 0.00 | 0.86 | 2.70 | 3.57 | 0.41 | 0.09 | 0.00 | 0.01 | 0.05 | 0.05 | 0.09 | 0.61 | 0.56 | 1.07 | 0.01 | 0.04 | 0.00 | 0.06 | 1.23 | 0.05 | 0.01 | 0.06 | 0.12 | 21.02 | 5.80 | 0.79 | 0.13 | 37.26 | 50.31 | 10.65 | 1.73 | 8.06 | 17.35 | 9.83 | 2.86 | 0 | 0.29 | 0.14 | 288.57 | 0.00 | 0.00 | 0 | 0 | 2500.00 | 750.00 | 20.71 | 1714.29 | 0 | 30.00 | 52.64 | 78.57 | 17.86 | 150.29 | 29.64 | 6.93 | 21.43 | 2.00 | 680.00 | 400.00 | 8.57 | 8.71 | 14.29 | 53.57 | 142.86 | 51.43 | 25.00 | 0.59 | 0 | 107.14 | 12.86 | 35.71 | 1.64 | 32.14 | 3.57 | 14.29 | 57.14 | 39.29 | 1.43 | 0 | 7.14 | 7.14 | 17.80 | 0.09 | 0.05 | 0.14 | 0 | 0.00 | 59.61 | 3.07 | 5.00 | 1.33 | 1.46 | 7.60 | 1.18 | 3.25 | 1.25 | 10.00 | 2.58 | 2.96 | 9.92 | 10.00 | 0.68 | 0.22 | 0.21 | 0.12 | 1.14 | 0.15 | 1.63 | 0.20 | 3.37 | 1.77 | 3.56 | 8.06 | 1.67 |
DHQ3 detailed food data for all foods consumed by each individual
Respondent ID | Sex (1=male; 2=female) | Question ID | Food ID | Size (0=sm; 1=med; 2=lg) | Daily Freq | Gram weight (g) | Energy (kcal) | *Gluten (g) | Alcohol (g) | Protein (g) | *Nitrogen (g) | *Total protein (g) | *Animal protein (g) | *Vegetable protein (g) | Total fat (g) | *Solid fat (g) | Total saturated fatty acids (g) | Total monounsaturated fatty acids (g) | Total polyunsaturated fatty acids (g) | *Total saturated fatty acids (g) | *Total monounsaturated fatty acids (g) | *Total polyunsaturated fatty acids (g) | *Polyunsaturated to saturated fatty acid ratio | Cholesterol (mg) | *Cholesterol to saturated fatty acid index | Carbohydrate (g) | Total sugars (g) | *Total sugars (g) | *Added sugars (g) | *Added sugars by total sugars (g) | *Available carbohydrate (g) | *Glycemic load (glucose reference) | *Glycemic load (bread reference) | *Fructose (g) | *Galactose (g) | *Glucose (g) | *Lactose (g) | *Maltose (g) | *Sucrose (g) | *Starch (g) | Dietary fiber (g) | *Total dietary fiber (g) | *Soluble dietary fiber (g) | *Insoluble dietary fiber (g) | *Pectins (g) | Retinol (mcg) | *Total vitamin A activity (International Units) (IU) | Vitamin A, retinol activity (mcg) | *Total vitamin A activity (RE) (mcg) | Beta-carotene (mcg) | *Beta-carotene (mcg) | Alpha-carotene (mcg) | Beta-cryptoxanthin (mcg) | Lutein + zeaxanthin (mcg) | Lycopene (mcg) | Vitamin E as alpha-tocopherol (mg) | *Vitamin E (Alpha Tocopherol) (mg) | Added alpha-tocopherol (mg) | *Total alpha-tocopherol (mg) | *Beta-tocopherol (mg) | *Gamma-tocopherol (mg) | *Delta-tocopherol (mg) | *Vitamin E (International Units) (IU) | *Natural alpha-tocopherol (RRR-alpha-tocopherol or d-alpha-tocopherol) (mg) | *Synthetic alpha-tocopherol (all rac-alpha-tocopherol or dl-alpha-tocopherol) (mg) | Vitamin K (mcg) | Vitamin C (mg) | Thiamin (Vitamin B1) (mg) | Riboflavin (Vitamin B2) (mg) | Niacin (mg) | *Niacin (mg) | Vitamin B6 (mg) | Total folate (mcg) | Folate, dietary folate (mcg) | Food folate (mcg) | Folic acid (mcg) | Vitamin B12 (mcg) | Added vitamin B12 (mcg) | *Pantothenic acid (mg) | Vitamin D (D2 + D3) (mcg) | *Vitamin D (calciferol) (mcg) | *Vitamin D (ergocalciferol) (mcg) | *Vitamin D (cholecalciferol (mcg) | Calcium (mg) | Phosphorus (mg) | Magnesium (mg) | Iron (mg) | Zinc (mg) | Copper (mg) | Selenium (mcg) | Sodium (mg) | Potassium (mg) | *Manganese (mg) | SFA 4:0 (Butanoic) (g) | SFA 6:0 (Hexanoic) (g) | SFA 8:0 (Octanoic) (g) | SFA 10:0 (Decanoic) (g) | SFA 12:0 (Dodecanoic) (g) | SFA 14:0 (Tetradecanoic) (g) | SFA 16:0 (Hexadecanoic) (g) | *SFA 17:0 (margaric acid) (g) | SFA 18:0 (Octadecanoic) (g) | *SFA 20:0 (arachidic acid) (g) | *SFA 22:0 (behenic acid) (g) | MFA 16:1 (Hexadecenoic) (g) | MFA 18:1 (Octadecenoic) (g) | MFA 20:1 (Eicosenoic) (g) | MFA 22:1 (Docosenoic) (g) | *MFA 14:1 (Myristoleic) (g) | PFA 18:2 (Octadecadienoic) (g) | PFA 18:3 (Octadecatrienoic) (g) | *PFA 18:3 N3 (Alpha linolenic) (g) | PFA 18:4 (Octadecatetraenoic) (g) | PFA 20:4 (Eicosatetraenoic) (g) | PFA 20:5 (Eicosapentaenoic) (g) | PFA 22:5 (Docosapentaenoic) (g) | PFA 22:6 (Docosahexaenoic) (g) | *Trans 18:1 (Trans-octadecenoic acid [elaidic acid]) (g) | *Trans 18:2 (Trans-octadecadienoic acid [linolelaidic acid]; incl. c-t, t-c, t-t) (g) | *Trans 16:1 (Trans-hexadecenoic acid) (g) | *Total trans fatty acitds (g) | *Omega-3 fatty acids (g) | *CLA 18:2 (Linoleic) (g) | *CLA cis9 trans11 (g) | *CLA trans10 cis12 (g) | *Tryptophan (g) | *Threonine (g) | *Isoleucine (g) | *Leucine (g) | *Lysine (g) | *Methionine (g) | *Cystine (g) | *Phenylalanine (g) | *Tyrosine (g) | *Valine (g) | *Arginine (g) | *Histidine (g) | *Alanine (g) | *Aspartic acid (g) | *Glutamin acid (g) | *Glycine (g) | *Proline (g) | *Serine (g) | *Daidzein (mg) | *Genistein (mg) | *Glycitein (mg) | *Coumestrol (mg) | *Biochanin A (mg) | *Formononetin (mg) | *Erythritol (g) | *Inositol (g) | *Isomalt (g) | *Lactitol (g) | *Maltitol (g) | *Mannitol (g) | *Pinitol (g) | *Sorbitol (g) | *Xylitol (g) | Caffeine (mg) | Theobromine (mg) | Moisture (g) | *Water (g) | Total Choline (mg) | *Aspartame (mg) | *Saccharin (mg) | *Phytic acid (mg) | *Oxalic acid (mg) | *3-Methylhistidine (mg) | *Sucrose polyester (g) | *Ash (g) | *Acesulfame potassium (mg) | *Sucralose (mg) | *Tagatose (g) | *Betaine (mg) | Citrus, melon, berry fruit (cups) | Other fruit (cups) | Fruits (cups) | Juice fruit (cups) | Total fruit (cups) | Dark-green vegetable (cups) | Red/orange tomato vegetable (cups) | Red/orange other vegetable (cups) | Total red/orange vegetable (cups) | White potato starchy vegetable (cups) | Other starchy vegetable (cups) | Total starchy vegetable (cups) | Other vegetable (cups) | Total vegetable (cups) | Legumes vegetable (cups) | Whole grain (oz) | Refined grain (oz) | Total number of grain (oz) | Meat from beef, pork, veal, lamb, and game protein foods (oz) | Cured meat protein foods (oz) | Meat from organ meat protein foods (oz) | Poultry protein foods (oz) | Seafood high in omega-3 protein foods (oz) | Seafood low in omega-3 protein foods (oz) | Seafood (oz) | Total meat, poultry, seafood protein foods (oz) | Eggs protein foods (oz) | Meat, poultry, and eggs (oz) | Soy products protein foods (oz) | Nuts and seeds protein foods (oz) | Legumes protein foods (oz) | Nuts, seeds, soy, and legumes (oz) | Total protein foods (oz) | Milk (cups) | Yogurt (cups) | Cheese (cups) | Total dairy (cups) | Oil (g) | Solid fat (g) | Added sugars (tsp) | Alcohol (drink(s)) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 11 | 1140.4 | 1 | 0.01 | 4.62 | 0.03 | 0 | 0 | 0.01 | 0 | 0.00 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.16 | 0.27 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 0.23 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 4.61 | 4.62 | 0 | 2.38 | 0 | 0 | 0.01 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 11 | 1140.3 | 1 | 0.01 | 4.69 | 0.08 | 0 | 0 | 0.01 | 0 | 0.01 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.15 | 0.37 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | 0.34 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.58 | 0 | 4.67 | 4.67 | 0 | 2.41 | 0 | 0 | 0.01 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 12 | 1140.4 | 1 | 0.02 | 9.26 | 0.06 | 0 | 0 | 0.01 | 0 | 0.01 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.32 | 0.54 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 0.44 | 0.46 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 9.24 | 9.25 | 0 | 4.77 | 0 | 0 | 0.02 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 12 | 1140.3 | 1 | 0.02 | 9.40 | 0.16 | 0 | 0 | 0.01 | 0 | 0.01 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.30 | 0.74 | 0.10 | 0.01 | 0.00 | 0.00 | 0.00 | 0.72 | 0.68 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.17 | 0 | 9.36 | 9.36 | 0 | 4.82 | 0 | 0 | 0.01 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 16 | 1154.2 | 1 | 2.33 | 1033.78 | 0.00 | 0 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 101.91 | 0.00 | 20.35 | 0.00 | 0.02 | 0.07 | 0.00 | 26.18 | 0.63 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 1033.54 | 1033.24 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.53 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 17 | 1154.2 | 1 | 2.88 | 1277.89 | 0.00 | 0 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 125.98 | 0.00 | 25.15 | 0.00 | 0.03 | 0.09 | 0.00 | 32.36 | 0.78 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 1277.60 | 1277.23 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.65 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Block FFQ data format:
RESPONDENTID | BOOKNUM | TODAYSDATE | SEX | PREGNANT | AGE | WEIGHT | HEIGHTFEET | HEIGHTINCHES | BMI | DT_KCAL | DT_PROT | DT_TFAT | DT_CARB | DT_CALC | DT_PHOS | DT_IRON | DT_SODI | DT_POTA | DT_GSH_T | DT_GSH_R | DT_THIA | DT_RIBO | DT_NIAC | DT_VITC | DT_SFAT | DT_MFAT | DT_PFAT | DT_CHOL | DT_FIBE | DT_SOLFIBR | DT_FOLFD | DT_ATOC | DT_ZINC | DT_AN_ZN | DT_VITB6 | DT_MAGN | DT_VARAE | DT_RET | DT_ACARO | DT_BCARO | DT_CRYPT | DT_LUTZE | DT_LYCO | DT_FOLAC | DT_VB12 | DT_VITD | DT_VITK | DT_COPP | DT_SEL | DT_SUG_T | DT_TRFAT | DT_ISOFLV | DT_QUERC | DT_CYSTEN | DT_METHI | DT_CYSTI | FOL_DFE | GI | GL | DT_ARGININE | DT_FA182 | DT_FA183 | DT_FA184 | DT_FA204 | DT_FA205 | DT_FA225 | DT_FA226 | DT_TOTN6 | DT_TOTN3 | DT_FRUCT | DT_LACT | DT_MALT | DT_GALAC | DT_SUCR | DT_GLUC | TOTAL_CHOLINE | FREE_CHOLINE | PHOSPHOCHOLINE | GLYCEROPHOSPHOCHOLINE_GPC | PHOSPHATIDYLCHOLINE_PTD | BETAINE | SPHINGOMYELIN_SM | DT_CAFFN | DT_THEOB | DT_ALCO | GROUP_SOLID_COUNT | GROUP_SOLID_TOTAL_FREQUENCY | GROUP_SOLID_TOTAL_GRAMS | PCTFAT | PCTPROT | PCTCARB | PCTSWEET | PCTALCH | BA_PFAT | BA_PPROT | BA_PCARB | GROUP_BEANFIBER_TOTAL_FIBE | GROUP_VEGETABLESFRUITFIBER_TOTAL_FIBE | GROUP_GRAINFIBER_TOTAL_FIBE | GROUP_SUGARYBEVG_TOTAL_GRAMS | GROUP_SUGARYBEVG_TOTAL_KCAL | VEGSRV | FRUITSRV | GRAINSRV | MEATSRV | DAIRYSRV | FATSRV | WGRAINS | SUP_VITA | SUP_VITC | SUP_VITD | SUP_VITE | SUP_IRON | SUP_CA | SUP_ZINC | SUP_BCAR | SUP_B1 | SUP_B6 | SUP_B12 | SUP_FOL | SUP_CU | SUP_SE | SUP_B2 | SUP_MG | SUP_NIAC | SUP_OM_3 | SUP_OM_6 | ADD_SUG | A_BEV | DFAT_OIL | DFAT_SOL | D_CHEESE | D_MILK | D_TOTAL | D_YOGURT | F_CITMLB | F_OTHER | F_TOTAL | F_SOLID | F_JUICE | JUICE100 | G_NWHL | G_TOTAL | G_WHL | LEGUMES | M_EGG | M_FISH_HI | M_FISH_LO | M_FRANK | M_MEAT | M_MPF | M_NUTSD | M_ORGAN | M_POULT | M_SOY | V_DPYEL | V_DRKGR | V_OTHER | V_POTATO | V_STARCY | V_TOMATO | V_TOTAL | PSFRUIT | PSVEGNBP | PSVEGDKG | PSVEGORN | PSLEGSOY | PSVEGPOT | PSVEGOTH | PSGTOT | PSGWHL | PSMFP | PSNUTSD | PSEGGS | PSDAIRY | PSOILS | BREAKSANDFREQ | BREAKSANDQUAN | OTHEREGGSFREQ | OTHEREGGSQUAN | SAUSAGEFREQ | SAUSAGEQUAN | BACONFREQ | BACONQUAN | PANCAKESFREQ | PANCAKESQUAN | COOKEDCEREALFREQ | COOKEDCEREALQUAN | COLDCEREALFREQ | COLDCEREALQUAN | MILKONCEREALFREQ | BUTTERMILKFREQ | BUTTERMILKQUAN | YOGURTONLYFREQ | YOGURTONLYQUAN | CHEESEFREQ | CHEESEQUAN | BANANAFREQ | BANANAQUAN | APPLESPEARSFREQ | APPLESPEARSQUAN | ORANGESFREQ | ORANGESQUAN | GRAPEFRUITFREQ | GRAPEFRUITQUAN | PEACHESFREQ | PEACHESQUAN | CANTALOUPEFREQ | CANTALOUPEQUAN | STRAWBERRIESFREQ | STRAWBERRIESQUAN | WATERMELONFREQ | WATERMELONQUAN | OTHERFRUITFREQ | OTHERFRUITQUAN | CANNEDFRUITFREQ | CANNEDFRUITQUAN | BROCCOLIFREQ | BROCCOLIQUAN | CARROTSFREQ | CARROTSQUAN | CORNFREQ | CORNQUAN | BEANSPEASFREQ | BEANSPEASQUAN | SPINACHCOOKEDFREQ | SPINACHCOOKEDQUAN | GREENSFREQ | GREENSQUAN | SWEETPOTATOESFREQ | SWEETPOTATOESQUAN | FRIESFREQ | FRIESQUAN | POTATOESFREQ | POTATOESQUAN | COLESLAWCABBAGEFREQ | COLESLAWCABBAGEQUAN | GREENSALADFREQ | GREENSALADQUAN | TOMATOESFREQ | TOMATOESQUAN | SALADDRESSINGFREQ | SALADDRESSINGQUAN | OTHERVEGGIESFREQ | OTHERVEGGIESQUAN | REFRIEDBEANSFREQ | REFRIEDBEANSQUAN | PINTOBEANSFREQ | PINTOBEANSQUAN | VEGGIESTEWFREQ | VEGGIESTEWQUAN | VEGSOUPFREQ | VEGSOUPQUAN | PEASOUPFREQ | PEASOUPQUAN | OTHERSOUPFREQ | OTHERSOUPQUAN | PIZZAFREQ | PIZZAQUAN | SPAGHETTIFREQ | SPAGHETTIQUAN | MACARONIFREQ | MACARONIQUAN | OTHERNOODLESFREQ | OTHERNOODLESQUAN | TOFUFREQ | TOFUQUAN | MEATSUBSTITUTEFREQ | MEATSUBSTITUTEQUAN | EATMEAT | BURGERFREQ | BURGERQUAN | HOTDOGFREQ | HOTDOGQUAN | BOLOGNAFREQ | BOLOGNAQUAN | MEATLOAFFREQ | MEATLOAFQUAN | STEAKFREQ | STEAKQUAN | TACOSFREQ | TACOSQUAN | RIBSFREQ | RIBSQUAN | PORKFREQ | PORKQUAN | VEALFREQ | VEALQUAN | LIVERFREQ | LIVERQUAN | FEETFREQ | FEETQUAN | MENUDOFREQ | MENUDOQUAN | MIXEDBEEFPORKFREQ | MIXEDBEEFPORKQUAN | FRIEDCHICKENFREQ | FRIEDCHICKENQUAN | NOTFRIEDCHICKENFREQ | NOTFRIEDCHICKENQUAN | MIXEDCHICKFREQ | MIXEDCHICKQUAN | OYSTERSFREQ | OYSTERSQUAN | SHELLFISHFREQ | SHELLFISHQUAN | TUNAFREQ | TUNAQUAN | FRIEDFISHFREQ | FRIEDFISHQUAN | NOTFRIEDFISHFREQ | NOTFRIEDFISHQUAN | BISCUITSFREQ | BISCUITSQUAN | BUNSFREQ | BUNSQUAN | BAGELFREQ | BAGELQUAN | TORTILLASFREQ | TORTILLASQUAN | CORNBREADFREQ | CORNBREADQUAN | OTHERBREADFREQ | OTHERBREADQUAN | RICEFREQ | RICEQUAN | MARGARINEFREQ | MARGARINEQUAN | BUTTERFREQ | BUTTERQUAN | PEANUTBUTTERFREQ | PEANUTBUTTERQUAN | JELLYFREQ | JELLYQUAN | MAYOFREQ | MAYOQUAN | SALSAFREQ | SALSAQUAN | MUSTARDFREQ | MUSTARDQUAN | SALTYSNACKSFREQ | SALTYSNACKSQUAN | CRACKERFREQ | CRACKERQUAN | NUTSFREQ | NUTSQUAN | POWERBARSFREQ | POWERBARSQUAN | BREAKFASTBARSFREQ | BREAKFASTBARSQUAN | DONUTFREQ | DONUTQUAN | CAKEFREQ | CAKEQUAN | COOKIESFREQ | COOKIESQUAN | ICECREAMFROYOFREQ | ICECREAMFROYOQUAN | CHOCOLATESYRUPFREQ | CHOCOLATESYRUPQUAN | PUMPKINPIEFREQ | PUMPKINPIEQUAN | OTHERPIEFREQ | OTHERPIEQUAN | CHOCOLATECANDYFREQ | CHOCOLATECANDYQUAN | CANDYFREQ | CANDYQUAN | MILKFREQ | MILKQUAN | DIETSHAKESFREQ | DIETSHAKESQUAN | TOMATOJUICEFREQ | TOMATOJUICEQUAN | ORANGEJUICEFREQ | ORANGEJUICEQUAN | REALJUICEFREQ | REALJUICEQUAN | HICFREQ | HICQUAN | SOMEJUICEFREQ | SOMEJUICEQUAN | ICEDTEAFREQ | ICEDTEAQUAN | KOOLAIDFREQ | KOOLAIDQUAN | SOFTDRINKSFREQ | SOFTDRINKSQUAN | BEERFREQ | BEERQUAN | WINEFREQ | WINEQUAN | LIQUORFREQ | LIQUORQUAN | WATERFREQ | WATERQUAN | COFFEEFREQ | COFFEEQUAN | HOTTEAFREQ | HOTTEAQUAN | CREAMINCOFFEE | CREAMINTEA | SUGARINCOFFEE | COFFEESUGARTEASPOONS | SUGARINTEA | TEASUGARTEASPOONS | VEGGIESFREQ | FRUITSFREQ | FATOILFREQ | MILKTYPE | DIETSHAKESTYPE | ORANGEJUICETYPE | SOFTDRINKSTYPE | ICEDTEATYPE | BEERTYPE | BURGERTYPE | HOTDOGTYPE | BOLOGNATYPE | SPAGHETTITYPE | CHEESETYPE | SALADDRESSTYPE | POWERBARSTYPE | BREAKFASTBARSTYPE | BREADTYPE | TORTILLATYPE | CHOCCANDYTYPE | COOKIESTYPE | CAKETYPE | ICECREAMFROYOTYPE | JELLYTYPE | FATONMEATTYPE | CHICKENSKINTYPE | COOKINGFATPAMORNONE | COOKINGFATBUTTER | COOKINGFATHALF | COOKINGFATSTICKMARG | COOKINGFATSOFTMARG | COOKINGFATDIET | COOKINGFATVEGGIE | COOKINGFATOLIVE | COOKINGFATLARD | COOKINGFATCRISCO | LCCEREALTYPE | CHEERIOSTYPE | TOTALTYPE | FIBERONETYPE | PRODUCT19TYPE | ALLBRANTYPE | OTHERFIBERTYPE | SWEETENEDTYPE | CORNFLAKESTYPE | PRENATALAMOUNT | PRENATALYEARS | ONEADAYAMOUNT | ONEADAYYEARS | STRESSTABSAMOUNT | STRESSTABSYEARS | VITAMINAAMOUNT | VITAMINAYEARS | BETACAROTENEAMOUNT | BETACAROTENEYEARS | VITAMINCAMOUNT | VITAMINCYEARS | VITAMINEAMOUNT | VITAMINEYEARS | FOLATEAMOUNT | FOLATEYEARS | CALCIUMAMOUNT | CALCIUMYEARS | VITAMINDAMOUNT | VITAMINDYEARS | ZINCAMOUNT | ZINCYEARS | IRONAMOUNT | IRONYEARS | SELENIUMAMOUNT | SELENIUMYEARS | OMEGA3AMOUNT | OMEGA3YEARS | PROBIOTICSAMOUNT | PROBIOTICSYEARS | MINERALSYESORNO | MGVITAMINCPERDAY | MGVITAMINEPERDAY | OTHEREGGSTYPE | ATEANYFISH | FRIEDFISH2FREQ | FRIEDFISH2QUAN | TUNA2FREQ | TUNA2QUAN | SALMONFREQ | SALMONQUAN | HALIBUTFREQ | HALIBUTQUAN | TROUTFREQ | TROUTQUAN | MACKERELFREQ | MACKERELQUAN | HERRINGFREQ | HERRINGQUAN | SARDINESFREQ | SARDINESQUAN | OTHERWHITEFISHFREQ | OTHERWHITEFISHQUAN |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 1236.28 | 38.06 | 43.17 | 183.70 | 497.60 | 771.04 | 10.74 | 1754.18 | 1728.82 | 29.94 | 17.51 | 1.05 | 1.34 | 11.83 | 105.74 | 13.09 | 16.43 | 9.96 | 236.49 | 13.53 | 4.29 | 153.72 | 5.43 | 6.53 | 2.50 | 1.51 | 203.68 | 468.00 | 326.82 | 58.74 | 1539.07 | 247.27 | 1762.05 | 2712.87 | 125.77 | 2.66 | 94.51 | 90.16 | 1.01 | 56.13 | 97.01 | 1.070 | 0.418 | 2.32 | 0.506 | 0.787 | 0.541 | 367.53 | 54.44 | 92.65 | 1983.86 | 8.88 | 0.737 | 0.00248 | 0.0876 | 0.01600 | 0.00305 | 0.0371 | 8.97 | 0.796 | 28.75 | 6.06 | 2.45 | 0.2620 | 29.51 | 24.96 | 225.79 | 36.98 | 6.46 | 23.51 | 147.31 | 57.75 | 11.17 | 0.953 | 9.07 | 1.500e-04 | 65 | 7.07 | 777.05 | 31.43 | 12.31 | 59.44 | 7.57 | 0.00 | 31.43 | 12.31 | 59.44 | 1.440 | 5.29 | 6.98 | 73.96 | 27.41 | 0.720 | 2.870 | 4.80 | 1.18 | 0.761 | 1.66 | 0.3080 | 1515 | 85 | 200 | 5 | 27 | 40 | 11 | 0 | 1.4 | 1.9 | 2.6 | 600 | 1 | 60 | 1.4 | 0 | 18 | 0 | 0 | 9.12 | 0.000 | 13.15 | 20.73 | 0.333 | 0.316 | 0.878 | 0.2170 | 0.758 | 1.600 | 2.340 | 1.470 | 0.868 | 0.851 | 2.36 | 3.94 | 1.590 | 0.025800 | 0.767 | 0.0145 | 0.0943 | 0.244 | 0.605 | 1.03 | 0.66500 | 0.003750 | 0.0679 | 0.01140 | 0.00768 | 0.154000 | 0.1870 | 0.1990 | 0.027700 | 0.0957 | 0.672 | 2.010 | 0.440 | 0.148000 | 0.00707 | 0.026600 | 0.1840 | 0.283 | 4.06 | 1.740 | 1.05 | 0.46000 | 0.892 | 0.761 | 1.210 | 2 | 1 | 7 | 2 | 4 | 1 | 4 | 4 | 4 | 2 | 7 | 3 | 7 | 4 | 7 | 4 | 4 | 4 | 3 | 7 | 1 | 4 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 4 | 4 | 7 | 3 | 3 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 4 | 3 | 1 | 2 | 3 | 3 | 1 | 2 | 3 | 2 | 4 | 2 | 3 | 1 | 4 | 4 | 4 | 1 | 4 | 3 | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 4 | 4 | 4 | 2 | 4 | 3 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 2 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 6 | 1 | 3 | 2 | 1 | 2 | 1 | 1 | 4 | 2 | 4 | 2 | 3 | 2 | 7 | 1 | 1 | 1 | 4 | 2 | 4 | 2 | 4 | 1 | 3 | 2 | 3 | 2 | 6 | 4 | 5 | 1 | 7 | 1 | 1 | 1 | 4 | 1 | 2 | 2 | 4 | 2 | 3 | 1 | 2 | 4 | 1 | 2 | 1 | 2 | 1 | 2 | 4 | 2 | 4 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 7 | 2 | 7 | 2 | 2 | 2 | 2 | 3 | 1 | 1 | 4 | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 9 | 4 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 7 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | M | 1 | M | M | M | M | M | 1 | M | 4 | 1 | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | M | 3 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
2 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 2396.83 | 68.37 | 111.94 | 286.85 | 625.03 | 1125.41 | 11.22 | 2746.08 | 1796.85 | 42.98 | 27.32 | 1.08 | 1.34 | 17.45 | 39.80 | 36.42 | 46.59 | 20.74 | 266.90 | 11.05 | 3.90 | 99.19 | 6.34 | 10.57 | 6.97 | 1.23 | 220.81 | 316.83 | 278.79 | 37.98 | 409.13 | 47.20 | 289.38 | 1412.01 | 130.08 | 3.72 | 40.34 | 37.46 | 1.20 | 86.85 | 174.16 | 7.480 | 2.150 | 3.77 | 1.070 | 1.440 | 0.654 | 320.32 | 50.04 | 138.01 | 3339.03 | 18.14 | 1.410 | 0.00264 | 0.1280 | 0.00920 | 0.00556 | 0.0238 | 18.27 | 1.450 | 47.92 | 9.35 | 2.15 | 0.0789 | 61.37 | 40.92 | 236.80 | 44.32 | 6.00 | 42.89 | 130.19 | 123.02 | 13.58 | 68.870 | 143.72 | 7.420e-05 | 55 | 5.80 | 665.56 | 42.03 | 11.41 | 47.87 | 44.76 | 0.00 | 42.03 | 11.41 | 47.87 | 0.335 | 2.65 | 5.64 | 868.60 | 327.64 | 0.916 | 0.319 | 5.02 | 2.79 | 0.522 | 4.85 | 0.0353 | 1515 | 185 | 200 | 5 | 92 | 40 | 61 | 0 | 1.4 | 1.9 | 2.6 | 1000 | 1 | 60 | 1.4 | 0 | 18 | 0 | 0 | 35.95 | 0.000 | 20.90 | 74.63 | 0.646 | 0.298 | 0.988 | 0.0218 | 0.123 | 0.258 | 0.378 | 0.208 | 0.169 | 0.108 | 5.15 | 5.40 | 0.252 | 0.030300 | 0.306 | 0.0195 | 0.1120 | 0.531 | 2.620 | 4.33 | 0.77300 | 0.013400 | 1.0300 | 0.03540 | 0.01180 | 0.000813 | 0.0911 | 0.4800 | 0.006450 | 0.0640 | 0.667 | 0.319 | 0.283 | 0.000813 | 0.00612 | 0.029500 | 0.4520 | 0.210 | 5.28 | 0.562 | 4.36 | 0.56400 | 0.338 | 0.956 | 0.330 | 4 | 1 | 4 | 3 | 4 | 2 | 4 | 3 | 4 | 3 | 2 | 3 | 4 | 4 | 4 | 2 | 2 | 3 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 7 | 3 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 3 | 3 | 4 | 3 | 1 | 2 | 6 | 3 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 6 | 3 | 4 | 2 | 4 | 2 | 1 | 2 | 4 | 3 | 6 | 3 | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 3 | 1 | 2 | 7 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 4 | 2 | 4 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 7 | 3 | 4 | 2 | 4 | 2 | 1 | 1 | 1 | 1 | 7 | 2 | 7 | 3 | 5 | 3 | 3 | 3 | 1 | 2 | 2 | 2 | 3 | 2 | 8 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 4 | 2 | 4 | 2 | 4 | 3 | 6 | 2 | 4 | 3 | 9 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 9 | 4 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | M | M | M | M | M | M | M | 1 | 1 | 4 | 1 | 1 | M | 1 | M | 1 | M | 1 | M | 4 | 1 | 1 | M | 4 | 1 | 1 | M | 1 | M | 4 | 1 | 4 | 1 | 1 | M | 1 | M | 1 | M | 1 | M | M | 4 | 1 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 |
3 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 3195.49 | 121.19 | 153.43 | 334.52 | 1398.52 | 2165.03 | 23.13 | 5679.46 | 3652.43 | 63.13 | 37.69 | 2.41 | 3.43 | 32.72 | 104.63 | 49.50 | 60.98 | 31.59 | 491.79 | 20.75 | 7.17 | 244.03 | 15.15 | 18.24 | 10.91 | 2.90 | 383.39 | 1086.41 | 907.71 | 224.09 | 1968.79 | 147.50 | 2027.03 | 9433.25 | 317.49 | 10.04 | 403.63 | 129.25 | 1.58 | 160.82 | 136.47 | 4.750 | 1.740 | 3.27 | 1.510 | 2.620 | 1.550 | 783.77 | 54.88 | 172.20 | 6017.81 | 27.25 | 2.950 | 0.00323 | 0.2010 | 0.02600 | 0.00995 | 0.0670 | 27.45 | 3.050 | 25.32 | 32.54 | 4.53 | 0.3090 | 37.58 | 27.85 | 490.77 | 102.77 | 20.01 | 80.42 | 257.12 | 212.84 | 28.52 | 4.550 | 19.20 | 1.177e+01 | 69 | 10.77 | 1171.41 | 43.21 | 15.17 | 41.87 | 8.46 | 1.16 | 43.72 | 15.35 | 42.37 | 1.340 | 5.66 | 13.25 | 398.42 | 143.61 | 1.550 | 1.150 | 12.53 | 5.03 | 2.670 | 4.44 | 0.8930 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 15.83 | 0.808 | 34.31 | 92.91 | 0.575 | 2.510 | 3.100 | 0.0000 | 0.403 | 0.744 | 1.150 | 0.910 | 0.239 | 0.151 | 8.74 | 10.61 | 1.870 | 0.061700 | 0.885 | 0.2480 | 0.9130 | 3.250 | 2.370 | 7.77 | 0.44100 | 0.014500 | 0.9480 | 0.02690 | 0.06390 | 0.194000 | 0.2460 | 0.5530 | 0.125000 | 0.4520 | 1.640 | 0.916 | 0.932 | 0.192000 | 0.04030 | 0.056200 | 0.5150 | 0.688 | 10.60 | 2.530 | 7.95 | 0.33600 | 0.967 | 3.030 | 4.180 | 6 | 1 | 6 | 2 | 7 | 2 | 4 | 3 | 6 | 3 | 7 | 3 | 7 | 4 | 8 | 1 | 3 | 1 | 3 | 4 | 2 | 8 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 4 | 3 | 2 | 2 | 6 | 2 | 5 | 3 | 4 | 3 | 4 | 3 | 6 | 2 | 4 | 2 | 7 | 2 | 1 | 2 | 2 | 1 | 4 | 3 | 2 | 2 | 7 | 2 | 4 | 2 | 1 | 2 | 4 | 3 | 1 | 2 | 5 | 3 | 4 | 2 | 2 | 2 | 4 | 2 | 2 | 3 | 2 | 3 | 1 | 3 | 4 | 3 | 5 | 2 | 7 | 3 | 4 | 3 | 2 | 3 | 1 | 2 | 1 | 1 | 1 | 4 | 1 | 8 | 2 | 5 | 2 | 4 | 3 | 6 | 2 | 6 | 3 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 3 | 4 | 3 | 6 | 2 | 1 | 2 | 4 | 3 | 1 | 2 | 4 | 3 | 4 | 2 | 4 | 3 | 4 | 2 | 7 | 3 | 5 | 2 | 4 | 2 | 1 | 1 | 4 | 3 | 6 | 2 | 4 | 3 | 4 | 2 | 4 | 2 | 1 | 2 | 4 | 2 | 6 | 2 | 6 | 2 | 6 | 2 | 9 | 3 | 6 | 2 | 5 | 2 | 1 | 1 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 1 | 2 | 3 | 1 | 2 | 2 | 2 | 4 | 2 | 5 | 2 | 5 | 2 | 9 | 2 | 1 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 1 | 1 | 7 | 3 | 4 | 2 | 1 | 1 | 1 | 2 | 4 | 3 | 9 | 2 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 3 | 5 | 6 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 2 | 1 | 2 | 3 | 2 | 2 | 2 | 1 | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | M | M | M | M | M | M | M | 1 | 1 | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | 1 | M | M | 1 | 1 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 |
4 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 2374.05 | 61.73 | 73.84 | 385.21 | 952.67 | 1210.01 | 14.11 | 2539.16 | 2609.20 | 32.88 | 18.66 | 1.66 | 2.10 | 18.16 | 171.26 | 26.85 | 27.51 | 14.37 | 209.16 | 24.83 | 7.72 | 214.55 | 8.27 | 8.65 | 2.12 | 2.00 | 310.63 | 899.72 | 562.35 | 83.56 | 3875.43 | 354.89 | 627.65 | 4632.37 | 153.28 | 3.09 | 170.80 | 43.22 | 1.49 | 81.72 | 207.60 | 3.210 | 2.070 | 21.26 | 0.776 | 1.170 | 0.711 | 475.13 | 56.80 | 204.69 | 2134.28 | 12.53 | 0.992 | 0.00141 | 0.0840 | 0.00582 | 0.00164 | 0.0119 | 12.61 | 1.010 | 39.68 | 15.81 | 8.86 | 0.1340 | 139.92 | 35.68 | 241.97 | 71.14 | 10.47 | 45.70 | 104.36 | 227.86 | 8.87 | 116.860 | 103.99 | 1.270e-03 | 31 | 9.08 | 780.32 | 27.99 | 10.40 | 64.90 | 39.90 | 0.00 | 27.99 | 10.40 | 64.90 | 0.000 | 8.02 | 16.28 | 1330.00 | 331.08 | 0.758 | 2.700 | 6.79 | 1.14 | 1.140 | 6.02 | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 33.83 | 0.000 | 11.61 | 44.92 | 0.281 | 1.090 | 1.390 | 0.0000 | 1.050 | 1.900 | 2.930 | 2.030 | 0.899 | 0.837 | 7.83 | 9.46 | 1.640 | 0.000645 | 0.452 | 0.0265 | 0.0258 | 0.300 | 0.464 | 1.15 | 0.31200 | 0.000000 | 0.3300 | 0.06580 | 0.26100 | 0.000374 | 0.0260 | 0.1510 | 0.000884 | 0.1600 | 0.581 | 2.090 | 0.357 | 0.000374 | 0.21300 | 0.000781 | 0.1460 | 0.144 | 9.72 | 2.150 | 1.24 | 0.28600 | 0.544 | 1.310 | 0.199 | 7 | 1 | 3 | 1 | 5 | 1 | 1 | 1 | 7 | 2 | 1 | 3 | 7 | 4 | 6 | 1 | 3 | 1 | 3 | 1 | 1 | 6 | 2 | 7 | 3 | 7 | 3 | 1 | 2 | 7 | 2 | 1 | 2 | 7 | 1 | 3 | 4 | 4 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 7 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 6 | 1 | 1 | 2 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 5 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 2 | 5 | 2 | 1 | 2 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 6 | 2 | 1 | 1 | 7 | 2 | 1 | 1 | 1 | 2 | 7 | 2 | 2 | 2 | 6 | 2 | 7 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3 | 2 | 9 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 7 | 2 | 3 | 2 | 2 | 2 | 9 | 4 | 3 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 7 | 2 | 6 | 3 | 7 | 2 | 1 | 2 | 5 | 2 | 6 | 2 | 6 | 3 | 1 | 2 | 1 | 2 | 9 | 3 | 9 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 9 | 4 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 7 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 1 | 3 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | M | 1 | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | 1 | M | M | 2 | 1 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 |
5 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 1965.05 | 47.03 | 34.53 | 385.79 | 749.59 | 1019.08 | 15.62 | 2044.02 | 3977.15 | 69.15 | 49.24 | 1.50 | 1.69 | 12.26 | 457.86 | 11.56 | 12.23 | 6.61 | 222.03 | 21.12 | 6.71 | 568.66 | 8.53 | 6.67 | 2.01 | 2.04 | 387.32 | 1412.56 | 280.63 | 123.72 | 13149.44 | 755.76 | 19834.62 | 4700.64 | 50.68 | 2.26 | 79.12 | 887.52 | 1.51 | 59.65 | 300.38 | 0.439 | 0.244 | 11.10 | 0.718 | 0.978 | 0.716 | 654.82 | 48.36 | 176.37 | 2750.03 | 5.11 | 0.946 | 0.00130 | 0.0840 | 0.00936 | 0.00257 | 0.0219 | 5.19 | 0.981 | 131.35 | 6.66 | 1.26 | 0.1450 | 38.92 | 97.96 | 304.64 | 69.69 | 15.70 | 40.95 | 170.32 | 919.27 | 8.50 | 72.300 | 3.79 | 0.000e+00 | 50 | 8.33 | 1107.19 | 15.81 | 9.57 | 78.53 | 29.42 | 0.00 | 15.81 | 9.57 | 78.53 | 0.937 | 16.94 | 3.77 | 1341.37 | 569.92 | 4.910 | 5.000 | 2.65 | 1.52 | 0.498 | 1.79 | 0.0486 | 1515 | 85 | 200 | 5 | 27 | 40 | 11 | 0 | 1.4 | 1.9 | 2.6 | 600 | 1 | 60 | 1.4 | 0 | 18 | 0 | 0 | 33.44 | 0.000 | 2.37 | 20.99 | 0.183 | 0.537 | 0.787 | 0.0494 | 3.700 | 3.070 | 6.670 | 2.670 | 4.000 | 3.800 | 1.84 | 3.09 | 1.250 | 0.009700 | 0.639 | 0.3850 | 0.3800 | 0.205 | 0.585 | 1.73 | 0.00544 | 0.000297 | 0.1680 | 0.00148 | 0.00718 | 1.670000 | 0.3720 | 0.0545 | 0.225000 | 0.0768 | 2.400 | 5.100 | 2.340 | 1.660000 | 0.01080 | 0.005570 | 0.0359 | 0.666 | 3.00 | 1.190 | 1.80 | 0.00263 | 0.803 | 0.705 | 0.358 | 7 | 1 | 6 | 1 | 2 | 1 | 3 | 2 | 4 | 2 | 8 | 3 | 5 | 2 | 8 | 5 | 1 | 3 | 2 | 1 | 1 | 9 | 2 | 9 | 2 | 5 | 2 | 1 | 2 | 5 | 2 | 9 | 2 | 9 | 3 | 9 | 3 | 9 | 2 | 1 | 2 | 8 | 3 | 1 | 2 | 8 | 2 | 1 | 2 | 9 | 3 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 8 | 3 | 1 | 2 | 3 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 3 | 5 | 3 | 1 | 3 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 2 | 4 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 3 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 2 | 3 | 1 | 3 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 7 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 9 | 3 | 9 | 3 | 7 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 9 | 4 | 1 | 1 | 1 | 2 | 1 | 1 | 8 | 4 | 1 | 1 | 5 | 1 | 4 | 4 | 1 | 1 | 2 | 1 | 6 | 8 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 1 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | M | 1 | M | M | M | M | M | M | M | 4 | 1 | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | M | 3 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 |
Your own dietary assessment tool data format:
id | gender | age | kcal | total_fruit | whole_fruit | total_vegetable | green_and_bean | total_protein | seafood_plant_protein | whole_grain | dairy | fatty_acid | refined_grain | sodium | added_sugar | saturated_fat | EXP_HEI2020_ALL | EXP_HEI2020_TOTALFRT | EXP_HEI2020_FRT | EXP_HEI2020_VEG | EXP_HEI2020_GREENNBEAN | EXP_HEI2020_TOTALPRO | EXP_HEI2020_SEAPLANTPRO | EXP_HEI2020_WHOLEGRAIN | EXP_HEI2020_DAIRY | EXP_HEI2020_FATTYACID | EXP_HEI2020_REFINEDGRAIN | EXP_HEI2020_SODIUM | EXP_HEI2020_ADDEDSUGAR | EXP_HEI2020_SATFAT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 18 | 1000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.20 | 1.80 | 1.10 | 6.50 | 8.0 | 40 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 10 | 10 | 10 | 10 |
2 | 2 | 18 | 1000 | 0.08 | 0.04 | 0.11 | 0.02 | 0.25 | 0.08 | 0.15 | 0.13 | 1.33 | 2.05 | 1.19 | 8.45 | 8.8 | 42 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 1 | 1 | 9 | 9 | 9 | 9 |
3 | 2 | 18 | 1000 | 0.16 | 0.08 | 0.22 | 0.04 | 0.50 | 0.16 | 0.30 | 0.26 | 1.46 | 2.30 | 1.28 | 10.40 | 9.6 | 44 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 2 | 2 | 2 | 8 | 8 | 8 | 8 |
4 | 2 | 18 | 1000 | 0.24 | 0.12 | 0.33 | 0.06 | 0.75 | 0.24 | 0.45 | 0.39 | 1.59 | 2.55 | 1.37 | 12.35 | 10.4 | 46 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 7 | 7 | 7 | 7 |
5 | 2 | 18 | 1000 | 0.32 | 0.16 | 0.44 | 0.08 | 1.00 | 0.32 | 0.60 | 0.52 | 1.72 | 2.80 | 1.46 | 14.30 | 11.2 | 48 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 4 | 4 | 4 | 6 | 6 | 6 | 6 |
6 | 2 | 18 | 1000 | 0.40 | 0.20 | 0.55 | 0.10 | 1.25 | 0.40 | 0.75 | 0.65 | 1.85 | 3.05 | 1.55 | 16.25 | 12.0 | 50 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Examples for using dietaryindex’s functions:
Remember, when using dietaryindex’s functions for NHANES, the complex survey design has to be taken into account! See the examples below. ___
Calculating HEI2020 for NHANES_FPED (after 2005)
# Using the first day nutrition data
FPED_PATH_1 = "/Users/james/Desktop/fped_dr1tot_1718.sas7bdat"
NUTRIENT_PATH_1 = "/Users/james/Desktop/DR1TOT_J.XPT"
DEMO_PATH_1 = "/Users/james/Desktop/DEMO_J.XPT"
HEI2020_NHANES_FPED(FPED_PATH=FPED_PATH_1, NUTRIENT_PATH=NUTRIENT_PATH_1, DEMO_PATH=DEMO_PATH_1)
# only the first day nutrition data
# Use the NHANES example data in 2017-2018 using only the first day nutrition data
HEI2020_NHANES_FPED_unweighted_d1 = HEI2020_NHANES_FPED(FPED_PATH=NHANES_20172018$FPED, NUTRIENT_PATH=NHANES_20172018$NUTRIENT, DEMO_PATH=NHANES_20172018$DEMO)
# set up survey design for NHANES data 2017-2018 day 1
NHANES_20172018_design_d1 = NHANES_20172018$FPED %>%
filter(!is.na(WTDRD1)) %>%
## select the variables needed for the survey design
select(SEQN, SDMVPSU, SDMVSTRA, WTDRD1)
# Merge the NHANES data with weighting variables with the HEI2020 results
NHANES_20172018_design_d1_HEI2020 = inner_join(HEI2020_NHANES_FPED_unweighted_d1, NHANES_20172018_design_d1, by = "SEQN")
print(NHANES_20172018_design_d1_HEI2020)
## # A tibble: 7,285 × 19
## SEQN RIDAGEYR HEI2020_ALL HEI2020_TOTALFRT HEI2020_FRT HEI2020_VEG
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 93704 2 63.5 5 0 3.03
## 2 93705 66 41.1 0 0 5
## 3 93706 18 44.5 0 0 1.65
## 4 93707 13 41.6 0 0 2.41
## 5 93708 66 58.5 2.45 4.90 5
## 6 93711 56 67.1 2.13 3.12 5
## 7 93712 18 69.5 5 5 3.49
## 8 93713 67 52.9 4.69 5 4.57
## 9 93714 54 38.6 0.376 0.702 0.638
## 10 93715 71 40.0 1.55 3.11 0.0706
## # ℹ 7,275 more rows
## # ℹ 13 more variables: HEI2020_GREENNBEAN <dbl>, HEI2020_TOTALPRO <dbl>,
## # HEI2020_SEAPLANTPRO <dbl>, HEI2020_WHOLEGRAIN <dbl>, HEI2020_DAIRY <dbl>,
## # HEI2020_FATTYACID <dbl>, HEI2020_REFINEDGRAIN <dbl>, HEI2020_SODIUM <dbl>,
## # HEI2020_ADDEDSUGAR <dbl>, HEI2020_SATFAT <dbl>, SDMVPSU <dbl>,
## # SDMVSTRA <dbl>, WTDRD1 <dbl>
# set up survey design for NHANES data 2017-2018 day 1
NHANES_design_1718_d1 <- svydesign(
## Masked variance pseudo-PSU
id = ~SDMVPSU,
## Masked variance pseudo-stratum
strata = ~SDMVSTRA,
## Dietary day one sample weight
weight = ~WTDRD1,
data = NHANES_20172018_design_d1_HEI2020,
nest = TRUE)
# summarize the weighted results
tbl_svysummary(
data=NHANES_design_1718_d1,
statistic = list(all_categorical() ~ "{n_unweighted} ({p}%)", all_continuous() ~ "{mean} ({mean.std.error})")
)
Characteristic | N = 316,291,3031 |
---|---|
Respondent sequence number | 98,305 (46) |
Age in years at screening | 39 (1) |
HEI2020_ALL | 49 (1) |
HEI2020_TOTALFRT | 2.01 (0.07) |
HEI2020_FRT | 2.08 (0.09) |
HEI2020_VEG | 2.77 (0.05) |
HEI2020_GREENNBEAN | 1.41 (0.06) |
HEI2020_TOTALPRO | 4.07 (0.04) |
HEI2020_SEAPLANTPRO | 2.20 (0.05) |
HEI2020_WHOLEGRAIN | 2.4 (0.1) |
HEI2020_DAIRY | 5.1 (0.1) |
HEI2020_FATTYACID | 4.7 (0.1) |
HEI2020_REFINEDGRAIN | 5.8 (0.1) |
HEI2020_SODIUM | 4.7 (0.1) |
Unknown | 69,264 |
HEI2020_ADDEDSUGAR | 6.7 (0.1) |
HEI2020_SATFAT | 5.3 (0.1) |
Unknown | 69,264 |
Masked variance pseudo-PSU | |
1 | 3,538 (49%) |
2 | 3,747 (51%) |
Masked variance pseudo-stratum | 140.9 (0.2) |
Dietary day one sample weight | 112,330 (6,644) |
1 Mean (SE); n (unweighted) (%) |
##################################################
# first day + second day nutrition data
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
HEI2020_NHANES_FPED_unweighted_d1d2 = HEI2020_NHANES_FPED(FPED_PATH=NHANES_20172018$FPED, NUTRIENT_PATH=NHANES_20172018$NUTRIENT, DEMO_PATH=NHANES_20172018$DEMO, FPED_PATH2=NHANES_20172018$FPED2, NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)
# set up survey design for NHANES data 2017-2018 day 1 and day 2
## filter out the missing values for the weight variable WTDR2D
NHANES_20172018_design_d1d2 = NHANES_20172018$FPED %>%
filter(!is.na(WTDR2D)) %>%
## select the variables needed for the survey design
select(SEQN, SDMVPSU, SDMVSTRA, WTDR2D)
# Merge the NHANES data with weighting variables with the HEI2020 results
NHANES_20172018_design_d1d2_HEI2020 = inner_join(HEI2020_NHANES_FPED_unweighted_d1d2, NHANES_20172018_design_d1d2, by = "SEQN")
print(NHANES_20172018_design_d1d2_HEI2020)
## # A tibble: 6,318 × 19
## SEQN RIDAGEYR HEI2020_ALL HEI2020_TOTALFRT HEI2020_FRT HEI2020_VEG
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 93704 2 61.7 5 2.5 1.55
## 2 93705 66 43.0 0.0759 0 3.46
## 3 93707 13 38.9 0 0 2.09
## 4 93708 66 49.9 1.22 2.45 3.20
## 5 93711 56 69.0 3.57 2.85 3.75
## 6 93712 18 46.4 2.5 2.5 2.42
## 7 93713 67 55.4 4.84 5 3.47
## 8 93714 54 36.1 0.321 0.617 1.85
## 9 93715 71 30.7 0.777 1.55 0.614
## 10 93716 61 65.0 5 5 4.03
## # ℹ 6,308 more rows
## # ℹ 13 more variables: HEI2020_GREENNBEAN <dbl>, HEI2020_TOTALPRO <dbl>,
## # HEI2020_SEAPLANTPRO <dbl>, HEI2020_WHOLEGRAIN <dbl>, HEI2020_DAIRY <dbl>,
## # HEI2020_FATTYACID <dbl>, HEI2020_REFINEDGRAIN <dbl>, HEI2020_SODIUM <dbl>,
## # HEI2020_ADDEDSUGAR <dbl>, HEI2020_SATFAT <dbl>, SDMVPSU <dbl>,
## # SDMVSTRA <dbl>, WTDR2D <dbl>
# calculate the weighted results using the survey design
NHANES_design_1718_d1d2 <- svydesign(
## Masked variance pseudo-PSU
id = ~SDMVPSU,
## Masked variance pseudo-stratum
strata = ~SDMVSTRA,
## Dietary two-day sample weight
weight = ~WTDR2D,
data = NHANES_20172018_design_d1d2_HEI2020,
nest = TRUE)
# summarize the weighted results
tbl_svysummary(
data=NHANES_design_1718_d1d2,
statistic = list(all_categorical() ~ "{n_unweighted} ({p}%)", all_continuous() ~ "{mean} ({mean.std.error})")
)
Characteristic | N = 316,221,0261 |
---|---|
Respondent sequence number | 98,306 (64) |
Age in years at screening | 39 (1) |
HEI2020_ALL | 50 (1) |
HEI2020_TOTALFRT | 2.10 (0.08) |
HEI2020_FRT | 2.12 (0.09) |
HEI2020_VEG | 2.78 (0.05) |
HEI2020_GREENNBEAN | 1.42 (0.06) |
HEI2020_TOTALPRO | 4.09 (0.03) |
HEI2020_SEAPLANTPRO | 2.19 (0.06) |
HEI2020_WHOLEGRAIN | 2.60 (0.11) |
HEI2020_DAIRY | 5.15 (0.07) |
HEI2020_FATTYACID | 4.72 (0.08) |
HEI2020_REFINEDGRAIN | 5.89 (0.06) |
HEI2020_SODIUM | 4.61 (0.07) |
Unknown | 73,081 |
HEI2020_ADDEDSUGAR | 6.92 (0.10) |
HEI2020_SATFAT | 5.31 (0.08) |
Unknown | 138,954 |
Masked variance pseudo-PSU | |
1 | 3,126 (50%) |
2 | 3,192 (50%) |
Masked variance pseudo-stratum | 141.0 (0.2) |
Dietary two-day sample weight | 141,541 (9,366) |
1 Mean (SE); n (unweighted) (%) |
# the sequence of DEMO, FPED, NUTRIENT data entry do not matter if you use "DEMO_PATH", "FPED_PATH2", "NUTRIENT_PATH2" to specify the data input
Calculating HEI2020 for NHANES_MPED (before 2005)
Calculating dietary index is just the first step. Please include complex survey design when analzying NHANES data as shown above.
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
data("NHANES_20032004")
HEI2020_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)
## # A tibble: 7,918 × 17
## SEQN TOTALKCAL_HEI2020 RIDAGEYR HEI2020_ALL HEI2020_TOTALFRT HEI2020_FRT
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21005 2598. 19 39.0 0.489 0
## 2 21006 1198 16 37.8 0.738 0
## 3 21007 943 14 43.0 3.97 1.03
## 4 21008 2236. 17 28.4 0 0
## 5 21009 4540. 55 43.4 0.182 0.311
## 6 21010 1834. 52 53.7 0.406 0.812
## 7 21012 2786 63 37.5 0 0
## 8 21013 1420. 13 44.6 2.44 2.5
## 9 21014 2079 3 49.0 2.5 0.880
## 10 21015 1638. 83 66.8 3.37 4.87
## # ℹ 7,908 more rows
## # ℹ 11 more variables: HEI2020_VEG <dbl>, HEI2020_GREENNBEAN <dbl>,
## # HEI2020_TOTALPRO <dbl>, HEI2020_SEAPLANTPRO <dbl>,
## # HEI2020_WHOLEGRAIN <dbl>, HEI2020_DAIRY <dbl>, HEI2020_FATTYACID <dbl>,
## # HEI2020_REFINEDGRAIN <dbl>, HEI2020_SODIUM <dbl>, HEI2020_ADDEDSUGAR <dbl>,
## # HEI2020_SATFAT <dbl>
Calculating HEI2015 for NHANES_FPED (after 2005)
Calculating dietary index is just the first step. Please include complex survey design when analzying NHANES data as shown above.
# Using the first day nutrition data
FPED_PATH_1 = "/Users/james/Desktop/fped_dr1tot_1718.sas7bdat"
NUTRIENT_PATH_1 = "/Users/james/Desktop/DR1TOT_J.XPT"
DEMO_PATH_1 = "/Users/james/Desktop/DEMO_J.XPT"
HEI2015_NHANES_FPED(FPED_PATH=FPED_PATH_1, NUTRIENT_PATH=NUTRIENT_PATH_1, DEMO_PATH=DEMO_PATH_1)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
HEI2015_NHANES_FPED(FPED_PATH=NHANES_20172018$FPED, NUTRIENT_PATH=NHANES_20172018$NUTRIENT, DEMO_PATH=NHANES_20172018$DEMO, FPED_PATH2=NHANES_20172018$FPED2, NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)
## # A tibble: 6,177 × 15
## SEQN HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT HEI2015_VEG HEI2015_GREENNBEAN
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 93704 61.7 5 2.5 1.55 0
## 2 93705 43.0 0.0759 0 3.46 4.83
## 3 93707 38.9 0 0 2.09 0
## 4 93708 49.9 1.22 2.45 3.20 0
## 5 93711 69.0 3.57 2.85 3.75 4.27
## 6 93712 46.4 2.5 2.5 2.42 2.5
## 7 93713 55.4 4.84 5 3.47 1.13
## 8 93714 36.1 0.321 0.617 1.85 0
## 9 93715 30.7 0.777 1.55 0.614 0
## 10 93716 65.0 5 5 4.03 4.73
## # ℹ 6,167 more rows
## # ℹ 9 more variables: HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## # HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## # HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## # HEI2015_SATFAT <dbl>
Calculating HEI2015 for NHANES_MPED (betweeen 1999-2004)
Calculating dietary index is just the first step. Please include complex survey design when analzying NHANES data as shown above.
data("NHANES_20032004")
HEI2015_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)
## # A tibble: 7,650 × 16
## SEQN TOTALKCAL_HEI2015 HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT HEI2015_VEG
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21005 2598. 53.7 0.489 0 2.28
## 2 21006 1198 46.3 0.738 0 3.95
## 3 21007 943 42.5 3.97 1.03 3.15
## 4 21008 2236. 45.8 0 0 2.37
## 5 21009 4540. 59.3 0.182 0.311 3.01
## 6 21010 1834. 59.4 0.406 0.812 4.10
## 7 21012 2786 54.0 0 0 2.89
## 8 21013 1420. 50.6 2.44 2.5 2.52
## 9 21014 2079 63.4 2.5 0.880 4.25
## 10 21015 1638. 73.7 3.37 4.87 3.42
## # ℹ 7,640 more rows
## # ℹ 10 more variables: HEI2015_GREENNBEAN <dbl>, HEI2015_TOTALPRO <dbl>,
## # HEI2015_SEAPLANTPRO <dbl>, HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>,
## # HEI2015_FATTYACID <dbl>, HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>,
## # HEI2015_ADDEDSUGAR <dbl>, HEI2015_SATFAT <dbl>
Calculating AHEI for NHANES_FPED (after 2005)
Calculating dietary index is just the first step. Please include complex survey design when analzying NHANES data as shown above.
FPED_IND_PATH = "/Users/james/Desktop/data/fped_dr1iff.sas7bdat"
NUTRIENT_IND_PATH = "/Users/james/Desktop/data/DR1IFF_J"
AHEI_NHANES_FPED(FPED_IND_PATH, NUTRIENT_IND_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
AHEI_NHANES_FPED(NHANES_20172018$FPED_IND, NHANES_20172018$NUTRIENT_IND, NHANES_20172018$FPED_IND2, NHANES_20172018$NUTRIENT_IND2)
## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Trans fat is not avaiable for NHANES, so it is not included in the AHEI score.
## # A tibble: 6,490 × 13
## SEQN AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN AHEI_NUTSLEG
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 93704 43.8 42.6 0.22 1.34 1.13 0
## 2 93705 39.9 38.6 3.05 0 0 10
## 3 93707 33.6 32.4 1.42 0 6.42 0.35
## 4 93708 49.1 47.9 5.18 0.612 0.643 5
## 5 93710 44.2 42.9 0.43 2.11 2.83 1.25
## 6 93711 53.3 48.5 6.75 1.62 3.97 10
## 7 93712 26.4 25.2 3.5 2.28 2.69 5
## 8 93713 38.8 37.6 6.08 4.61 0.961 1.85
## 9 93714 34.8 33.6 0.04 0.25 4.99 0
## 10 93715 20.1 18.9 0.44 0.4 0 0
## # ℹ 6,480 more rows
## # ℹ 6 more variables: AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>, AHEI_SSB_FRTJ <dbl>,
## # AHEI_REDPROC_MEAT <dbl>, AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating AHEI for NHANES_MPED (1999-2004)
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
data("NHANES_20032004")
AHEI_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)
## [1] "Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used."
## # A tibble: 7,650 × 13
## SEQN AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN AHEI_NUTSLEG
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21005 25.9 23.4 1.79 0 5 2.07
## 2 21006 24.4 21.9 0.761 0 1.21 1.48
## 3 21007 26.0 23.5 3.09 0.154 0 0
## 4 21008 21.3 18.8 4.71 0 2.31 0.0363
## 5 21009 37.1 34.6 3.29 0.277 0.0156 0.458
## 6 21010 30.8 28.3 1.27 0.353 0 5.59
## 7 21012 23.5 20.1 2.60 0 1.44 5.06
## 8 21013 20.9 18.4 1.30 0.653 0 0.0617
## 9 21014 41.5 39.0 4.83 0.445 1.06 5.03
## 10 21015 46.3 43.8 3.04 2.11 3.38 5.03
## # ℹ 7,640 more rows
## # ℹ 6 more variables: AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>, AHEI_SSB_FRTJ <dbl>,
## # AHEI_REDPROC_MEAT <dbl>, AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating aMED for NHANES_FPED (after 2005)
Calculating dietary index is just the first step. Please include complex survey design when analzying NHANES data as shown above.
FPED_PATH = "/Users/james/Desktop/fped_dr1tot_1718.sas7bdat"
NUTRIENT_PATH = "/Users/james/Desktop/DR1TOT_J.XPT"
DEMO_PATH = "/Users/james/Desktop/DEMO_J.XPT"
MED_NHANES_FPED(FPED_PATH, NUTRIENT_PATH, DEMO_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
MED_NHANES_FPED(FPED_PATH=NHANES_20172018$FPED, NUTRIENT_PATH=NHANES_20172018$NUTRIENT, DEMO_PATH=NHANES_20172018$DEMO, FPED_PATH2=NHANES_20172018$FPED2, NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)
## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 6,174 × 12
## SEQN MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES MED_NUTS
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 93704 3.5 3.5 1 0 0.5 0 0
## 2 93705 3.5 3.5 0 0.5 0 1 0.5
## 3 93707 2.5 2.5 0 0.5 1 0.5 0
## 4 93708 3.5 3.5 0.5 0.5 0.5 0 0.5
## 5 93711 5.5 5.5 1 1 0.5 1 1
## 6 93712 3 3 0.5 1 0.5 0.5 0
## 7 93713 3.5 3.5 1 1 0.5 0.5 0
## 8 93714 1.5 1.5 0 0 0.5 0 0
## 9 93715 0.5 0.5 0 0 0 0 0
## 10 93716 6 6 1 1 0.5 1 1
## # ℹ 6,164 more rows
## # ℹ 4 more variables: MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## # MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating aMED for NHANES_MPED (1999-2004)
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
data("NHANES_20032004")
MED_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)
## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 7,647 × 12
## SEQN MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES MED_NUTS
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21005 2 2 0 0.5 0.5 0 0.5
## 2 21006 3.5 3.5 0 0 0.5 0.5 0.5
## 3 21007 2.5 2.5 0 0.5 0 0 0
## 4 21008 3.5 3.5 0 1 0.5 1 0
## 5 21009 4 4 0 0.5 0.5 0.5 0
## 6 21010 2 1.5 0 0 0 1 0
## 7 21012 3 3 0 0.5 0.5 1 0
## 8 21013 2.5 2.5 0 0 0 0.5 0.5
## 9 21014 5 5 0.5 1 0.5 1 0.5
## 10 21015 4.5 4.5 0.5 0.5 1 1 0.5
## # ℹ 7,637 more rows
## # ℹ 4 more variables: MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## # MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating MEDI for NHANES_FPED (after 2005)
Calculating dietary index is just the first step. Please include complex survey design when analzying NHANES data as shown above.
FPED_IND_PATH = "/Users/james/Desktop/data/fped_dr1iff.sas7bdat"
NUTRIENT_IND_PATH = "/Users/james/Desktop/data/DR1IFF_J"
MEDI_NHANES_FPED(FPED_IND_PATH, NUTRIENT_IND_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
MEDI_NHANES_FPED(FPED_IND_PATH=NHANES_20172018$FPED_IND, NUTRIENT_IND_PATH=NHANES_20172018$NUTRIENT_IND, FPED_IND_PATH2=NHANES_20172018$FPED_IND2, NUTRIENT_IND_PATH2=NHANES_20172018$NUTRIENT_IND2)
## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no SWEETS code is provided, the default SSB code from 17-18 FNDDS file is used
## Since no FAT_OIL code is provided, the default FAT_OIL code from 17-18 FNDDS file is used
## Since no OLIVE_OIL code is provided, the default OLIVE_OIL code from 17-18 FNDDS file is used
## # A tibble: 6,490 × 14
## SEQN MEDI_ALL MEDI_NOETOH MEDI_OLIVE_OIL MEDI_FRT MEDI_VEG MEDI_LEGUMES
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 93704 3 3 0 0 0 0
## 2 93705 3.5 3.5 0 0 0 1
## 3 93707 2 2 0 0 0 0
## 4 93708 3.5 3.5 0 0 0.5 0
## 5 93710 3 3 0 0 0 0
## 6 93711 5 4.5 0 0 0.5 1
## 7 93712 3 3 0 0 0 0.5
## 8 93713 2.5 2.5 0 0 0.5 0
## 9 93714 3 3 0 0 0 0
## 10 93715 3 3 0 0 0 0
## # ℹ 6,480 more rows
## # ℹ 7 more variables: MEDI_NUTS <dbl>, MEDI_FISH <dbl>, MEDI_ALCOHOL <dbl>,
## # MEDI_SSB <dbl>, MEDI_SWEETS <dbl>, MEDI_DISCRET_FAT <dbl>,
## # MEDI_REDPROC_MEAT <dbl>
Calculating MEDI for NHANES_MPED (1999-2004)
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
data("NHANES_20032004")
MEDI_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)
## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no SWEETS code is provided, the default SSB code from 17-18 FNDDS file is used
## Since no FAT_OIL code is provided, the default FAT_OIL code from 17-18 FNDDS file is used
## Since no OLIVE_OIL code is provided, the default OLIVE_OIL code from 17-18 FNDDS file is used
## # A tibble: 7,650 × 14
## SEQN MEDI_ALL MEDI_NOETOH MEDI_OLIVE_OIL MEDI_FRT MEDI_VEG MEDI_LEGUMES
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21005 1.5 1.5 0 0 0 0
## 2 21006 3.5 3.5 0 0 0 0
## 3 21007 2 2 0 0 0 0
## 4 21008 2.5 2.5 0 0 0 0
## 5 21009 2.5 2.5 0 0 0 0
## 6 21010 4 3 0 0 0 0.5
## 7 21012 2.5 1.5 0 0 0 0.5
## 8 21013 1.5 1.5 0 0 0 0
## 9 21014 4 4 0 0 0 0.5
## 10 21015 3 3 0 0 0 0
## # ℹ 7,640 more rows
## # ℹ 7 more variables: MEDI_NUTS <dbl>, MEDI_FISH <dbl>, MEDI_ALCOHOL <dbl>,
## # MEDI_SSB <dbl>, MEDI_SWEETS <dbl>, MEDI_DISCRET_FAT <dbl>,
## # MEDI_REDPROC_MEAT <dbl>
Calculating DASH for NHANES_FPED (after 2005)
Calculating dietary index is just the first step. Please include complex survey design when analzying NHANES data as shown above.
FPED_IND_PATH = "/Users/james/Desktop/data/fped_dr1iff.sas7bdat"
NUTRIENT_IND_PATH = "/Users/james/Desktop/data/DR1IFF_J"
DASH_NHANES_FPED(FPED_IND_PATH, NUTRIENT_IND_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
DASH_NHANES_FPED(NHANES_20172018$FPED_IND, NHANES_20172018$NUTRIENT_IND, NHANES_20172018$FPED_IND2, NHANES_20172018$NUTRIENT_IND2)
## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no skim milk code is provided, the default skim milk code from 17-18 FNDDS file is used.
## Since no low-fat cheese code is provided, the default low-fat cheese code from 17-18 FNDDS file is used.
## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 6,490 × 10
## SEQN DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN DASH_LOWF_DAIRY
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 93704 23.5 4.5 1 1 2.5 1
## 2 93705 18.5 1.5 3 4 1 1
## 3 93707 20 1 2 2 4.5 1
## 4 93708 23 2 3.5 3 2 1
## 5 93710 25.5 3.5 1.5 2.5 3.5 1
## 6 93711 31 4.5 4.5 5 3 5
## 7 93712 18 3 3.5 3 3 1
## 8 93713 24.5 4.5 4.5 2.5 2.5 1
## 9 93714 17.5 2.5 1 1 3 3
## 10 93715 14.5 2 1.5 1 1 1
## # ℹ 6,480 more rows
## # ℹ 3 more variables: DASH_SODIUM <dbl>, DASH_REDPROC_MEAT <dbl>,
## # DASH_SSB_FRTJ <dbl>
Calculating DASH for NHANES_MPED (1999-2004)
# Use the NHANES example data in 1999-2004 using the first day + second day nutrition data
data("NHANES_20032004")
DASH_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)
## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no skim milk code is provided, the default skim milk code from 17-18 FNDDS file is used.
## Since no low-fat cheese code is provided, the default low-fat cheese code from 17-18 FNDDS file is used.
## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 7,650 × 10
## SEQN DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN DASH_LOWF_DAIRY
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21005 15.5 2 2 2.5 3 1
## 2 21006 18 2 2 2.5 2.5 1
## 3 21007 18 3 3 1 1 1
## 4 21008 17.5 1 3.5 2.5 3 1
## 5 21009 19.5 2 3 2 2 1
## 6 21010 18 1.5 2 4 1 1
## 7 21012 17.5 1 3 4 2.5 1
## 8 21013 16 2.5 2 2 1 1
## 9 21014 25.5 3 4 4 2.5 1
## 10 21015 27.5 3 3 4 4.5 1
## # ℹ 7,640 more rows
## # ℹ 3 more variables: DASH_SODIUM <dbl>, DASH_REDPROC_MEAT <dbl>,
## # DASH_SSB_FRTJ <dbl>
Calculating DASHI for NHANES_FPED (after 2005)
Calculating dietary index is just the first step. Please include complex survey design when analzying NHANES data as shown above.
FPED_IND_PATH = "/Users/james/Desktop/data/fped_dr1iff.sas7bdat"
NUTRIENT_IND_PATH = "/Users/james/Desktop/data/DR1IFF_J"
DASHI_NHANES_FPED(FPED_IND_PATH, NUTRIENT_IND_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
DASHI_NHANES_FPED(NUTRIENT_PATH = NHANES_20172018$NUTRIENT, NUTRIENT_PATH2 = NHANES_20172018$NUTRIENT2)
## # A tibble: 6,491 × 11
## SEQN DASHI_ALL DASHI_TOTAL_FAT DASHI_SAT_FAT DASHI_CHOLESTEROL DASHI_SODIUM
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 93704 4.72 0.768 0.840 0.680 0.5
## 2 93705 2.49 0 0.472 0.5 0
## 3 93707 1.15 0 0.0199 0 0.0844
## 4 93708 2.80 0 0.173 0.5 0
## 5 93710 4.21 0.653 0.490 0.5 0.5
## 6 93711 3.62 0.0920 0.490 0.312 0.5
## 7 93712 3.89 0.844 0.640 0.629 0
## 8 93713 3.79 0.5 0.428 0.889 0.772
## 9 93714 1.68 0 0 0 0
## 10 93715 1.82 0 0.239 0.162 0.5
## # ℹ 6,481 more rows
## # ℹ 5 more variables: DASHI_PROTEIN <dbl>, DASHI_FIBER <dbl>,
## # DASHI_POTASSIUM <dbl>, DASHI_MAGNESIUM <dbl>, DASHI_CALCIUM <dbl>
Calculating DASHI for NHANES_FPED (1999-2004)
# Use the NHANES example data in 1999-2004 using the first day + second day nutrition data
data("NHANES_20032004")
DASHI_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)
## # A tibble: 7,650 × 11
## SEQN DASHI_ALL DASHI_TOTAL_FAT DASHI_SAT_FAT DASHI_CHOLESTEROL DASHI_SODIUM
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21005 2.28 0.321 0.585 0.550 0
## 2 21006 2.53 0.591 0.577 0.5 0
## 3 21007 2.97 0.5 0.546 0.5 0.300
## 4 21008 1.54 0.185 0.313 0.381 0
## 5 21009 1.73 0 0.454 0.294 0.5
## 6 21010 4.92 0.812 0.435 0.781 1
## 7 21012 1.30 0.113 0.388 0 0
## 8 21013 2.94 0.410 0.614 0.968 0.672
## 9 21014 5.17 0.725 0.373 0.742 0
## 10 21015 4.84 0.373 0.394 0.661 0.677
## # ℹ 7,640 more rows
## # ℹ 5 more variables: DASHI_PROTEIN <dbl>, DASHI_FIBER <dbl>,
## # DASHI_POTASSIUM <dbl>, DASHI_MAGNESIUM <dbl>, DASHI_CALCIUM <dbl>
This function was improved by Zhe Xu (zxu@cmu.edu.cn) to include the other DII ingredients, including Garlic, Ginger, Onion, Pepper, Thyme/oregano, and other Flavonoids, in the calculation.
FPED_PATH = "/Users/james/Desktop/fped_dr1tot_1718.sas7bdat"
NUTRIENT_PATH = "/Users/james/Desktop/DR1TOT_J.XPT"
DEMO_PATH = "/Users/james/Desktop/DEMO_J.XPT"
DII_NHANES_FPED(FPED_PATH, NUTRIENT_PATH, DEMO_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
data("DII_OTHER_INGREDIENTS_day1")
data("DII_OTHER_INGREDIENTS_day2")
DII_NHANES_FPED(FPED_PATH = NHANES_20172018$FPED, NUTRIENT_PATH = NHANES_20172018$NUTRIENT, DEMO_PATH = NHANES_20172018$DEMO, FPED_PATH2 = NHANES_20172018$FPED2, NUTRIENT_PATH2 = NHANES_20172018$NUTRIENT2, OTHER_INGREDIENTS1 = DII_OTHER_INGREDIENTS_day1, OTHER_INGREDIENTS2 = DII_OTHER_INGREDIENTS_day2)
## VITD is included in the calculation in the first day of NHANES data.
## VITD is included in the calculation in the second day of NHANES data.
## Reminder: This function does not use all the original DII variables. Eugenol, trans fat, turmeric, Green/black tea, Rosemary are not included.
## Day 1 and Day 2 data are used for the calculation.
## Note: Flavonoid data is only available for NHANES 2007-2010 and 2017-2018.
## # A tibble: 6,174 × 42
## SEQN DII_ALL DII_NOETOH ALCOHOL VITB12 VITB6 BCAROTENE CAFFEINE
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 93704 5.81 5.53 0.278 -0.0263 0.0738 0.560 0.0849
## 2 93705 5.35 5.07 0.278 -0.0942 0.305 0.223 0.0833
## 3 93707 6.31 6.03 0.278 -0.0427 0.0267 0.564 0.0849
## 4 93708 5.81 5.53 0.278 -0.0721 0.216 0.451 0.0849
## 5 93711 -0.139 -0.139 -0.0000238 -0.0578 -0.185 0.223 0.0828
## 6 93712 2.90 2.62 0.278 0.0207 -0.329 0.534 0.0845
## 7 93713 2.13 1.85 0.278 -0.0477 -0.140 0.274 0.0826
## 8 93714 5.95 5.67 0.278 -0.0601 0.00904 0.561 0.0846
## 9 93715 7.07 6.79 0.278 -0.0745 0.309 0.562 0.0824
## 10 93716 0.662 0.384 0.278 0.0245 -0.357 -0.237 0.0844
## # ℹ 6,164 more rows
## # ℹ 34 more variables: CARB <dbl>, CHOLES <dbl>, KCAL <dbl>, TOTALFAT <dbl>,
## # FIBER <dbl>, FOLICACID <dbl>, IRON <dbl>, MG <dbl>, MUFA <dbl>,
## # NIACIN <dbl>, N3FAT <dbl>, N6FAT <dbl>, PROTEIN <dbl>, PUFA <dbl>,
## # RIBOFLAVIN <dbl>, SATFAT <dbl>, SE <dbl>, THIAMIN <dbl>, VITA <dbl>,
## # VITC <dbl>, VITE <dbl>, ZN <dbl>, VITD <dbl>, GARLIC <dbl>, GINGER <dbl>,
## # ONION <dbl>, FLA3OL <dbl>, FLAVONES <dbl>, FLAVONOLS <dbl>, …
Calculating DII for NHANES_MPED (1999-2004)
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
data("NHANES_20032004")
data("DII_OTHER_INGREDIENTS_day1")
data("DII_OTHER_INGREDIENTS_day2")
DII_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2, OTHER_INGREDIENTS1 = DII_OTHER_INGREDIENTS_day1, OTHER_INGREDIENTS2 = DII_OTHER_INGREDIENTS_day2)
## VITD is not included in the calculation in the first day of NHANES data.
## It is normal to see warnings if you do not provide all arguments using DII. The algorithm will only count the arguments you enter to calculate the DII. All warnings are about the first column you don't use. For example, if you only entered alcohol, vitamin b12, and vitamin b6, all warnings would remind you that bcarotene is not found.
## VITD is not included in the calculation in the first day of NHANES data.
## It is normal to see warnings if you do not provide all arguments using DII. The algorithm will only count the arguments you enter to calculate the DII. All warnings are about the first column you don't use. For example, if you only entered alcohol, vitamin b12, and vitamin b6, all warnings would remind you that bcarotene is not found.
## Reminder: This function does not use all the original DII variables. Eugenol, trans fat, turmeric, Green/black tea, Rosemary are not included.
## Day 1 and Day 2 data are used for the calculation.
## Note: Flavonoid data is only available for NHANES 2007-2010 and 2017-2018.
## # A tibble: 7,650 × 48
## SEQN DII_ALL DII_NOETOH ALCOHOL_DII VITB12_DII VITB6_DII BCAROTENE_DII
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21005 2.68 2.40 0.278 -0.0305 -0.107 0.555
## 2 21006 4.76 4.48 0.278 -0.0868 0.224 0.563
## 3 21007 4.82 4.54 0.278 -0.0904 0.277 0.540
## 4 21008 4.28 4.00 0.278 -0.0383 0.150 0.537
## 5 21009 1.21 0.937 0.278 0.0337 -0.293 0.528
## 6 21010 3.34 3.61 -0.274 -0.0499 0.0303 0.563
## 7 21012 3.23 3.51 -0.278 0.0360 -0.194 0.549
## 8 21013 4.57 4.29 0.278 -0.0565 0.150 0.559
## 9 21014 1.93 1.65 0.278 0.0706 -0.204 0.524
## 10 21015 2.39 2.11 0.278 -0.0551 -0.0627 0.134
## # ℹ 7,640 more rows
## # ℹ 41 more variables: CAFFEINE_DII <dbl>, CARB_DII <dbl>, CHOLES_DII <dbl>,
## # KCAL_DII <dbl>, EUGENOL_DII <dbl>, TOTALFAT_DII <dbl>, FIBER_DII <dbl>,
## # FOLICACID_DII <dbl>, GARLIC_DII <dbl>, GINGER_DII <dbl>, IRON_DII <dbl>,
## # MG_DII <dbl>, MUFA_DII <dbl>, NIACIN_DII <dbl>, N3FAT_DII <dbl>,
## # N6FAT_DII <dbl>, ONION_DII <dbl>, PROTEIN_DII <dbl>, PUFA_DII <dbl>,
## # RIBOFLAVIN_DII <dbl>, SAFFRON_DII <dbl>, SATFAT_DII <dbl>, SE_DII <dbl>, …
Calculating HEI2020 for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
# if you want to summarize all recalls into a result via average
HEI2020_ASA24(DATA_PATH, RECALL_SUMMARIZE = TRUE)
# if you want to use all individual recalls
HEI2020_ASA24(DATA_PATH, RECALL_SUMMARIZE = FALSE)
#Use the example data
data("ASA24_exp")
HEI2015_ASA24(ASA24_exp, RECALL_SUMMARIZE = TRUE)
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## # A tibble: 21 × 17
## # Groups: UserName, UserID [21]
## UserName UserID TOTALKCAL HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 e6541891-8a22-49… 1514. 69.8 1.26 2.45
## 2 2 dbb278b0-b589-44… 935. 52.8 5 0
## 3 3 f0115426-e6f8-4c… 1655. 51.2 5 5
## 4 4 337d84a7-3bff-48… 1571. 47.5 0 0
## 5 5 998f098a-8584-49… 907. 45.2 0 0
## 6 6 aae330db-8f22-4d… 1271. 52.9 3.78 5
## 7 7 76e0f3e1-8e17-49… 2662. 48.4 1.51 2.23
## 8 8 24de994f-e06a-41… 2039. 69.0 2.76 5
## 9 9 8f61ae64-6a82-4f… 1469. 70.9 5 5
## 10 10 b47ab1b8-e62b-4b… 1636. 61.2 2.64 0
## # ℹ 11 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## # HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## # HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## # HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## # HEI2015_SATFAT <dbl>
HEI2015_ASA24(ASA24_exp, RECALL_SUMMARIZE = FALSE)
## RECALL_SUMMARIZE is FALSE, skipping summarization step...
## # A tibble: 42 × 17
## UserName UserID TOTALKCAL HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 e6541891-8a22-49… 2019. 69.8 1.26 2.45
## 2 1 e6541891-8a22-49… 1010. 69.8 1.26 2.45
## 3 2 dbb278b0-b589-44… 1247. 52.8 5 0
## 4 2 dbb278b0-b589-44… 623. 52.8 5 0
## 5 3 f0115426-e6f8-4c… 2206. 51.2 5 5
## 6 3 f0115426-e6f8-4c… 1103. 51.2 5 5
## 7 4 337d84a7-3bff-48… 2095. 47.5 0 0
## 8 4 337d84a7-3bff-48… 1047. 47.5 0 0
## 9 5 998f098a-8584-49… 1209. 45.2 0 0
## 10 5 998f098a-8584-49… 605. 45.2 0 0
## # ℹ 32 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## # HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## # HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## # HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## # HEI2015_SATFAT <dbl>
Calculating HEI2020_toddlers for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
# if you want to summarize all recalls into a result via average
HEI2020_TODDLERS_ASA24(DATA_PATH, RECALL_SUMMARIZE = TRUE)
# if you want to use all individual recalls
HEI2020_TODDLERS_ASA24(DATA_PATH, RECALL_SUMMARIZE = FALSE)
#Use the example data
data("ASA24_exp")
HEI2020_TODDLERS_ASA24(ASA24_exp, RECALL_SUMMARIZE = TRUE)
## [1] "RECALL_SUMMARIZE = TRUE, summarizing HEI2020_TODDLERS for ASA24 data by averaging over all possible recalls per person per day..."
## [1] "The results should be only used for HEI-Toddlers 2020 (age 1-2 years), not for HEI-2020 (non-toddlers, age > 2 years)."
## # A tibble: 21 × 17
## # Groups: UserName, UserID [21]
## UserName UserID TOTALKCAL HEI2020_TODDLERS_ALL HEI2020_TODDLERS_TOT…¹
## <dbl> <chr> <dbl> <dbl> <dbl>
## 1 1 e6541891-8a22… 1514. 60.8 1.44
## 2 2 dbb278b0-b589… 935. 55.2 5
## 3 3 f0115426-e6f8… 1655. 47.8 5
## 4 4 337d84a7-3bff… 1571. 50.7 0
## 5 5 998f098a-8584… 907. 39.3 0
## 6 6 aae330db-8f22… 1271. 46.9 4.32
## 7 7 76e0f3e1-8e17… 2662. 45.4 1.73
## 8 8 24de994f-e06a… 2039. 70.3 3.16
## 9 9 8f61ae64-6a82… 1469. 69.1 5
## 10 10 b47ab1b8-e62b… 1636. 59.2 3.01
## # ℹ 11 more rows
## # ℹ abbreviated name: ¹HEI2020_TODDLERS_TOTALFRT
## # ℹ 12 more variables: HEI2020_TODDLERS_FRT <dbl>, HEI2020_TODDLERS_VEG <dbl>,
## # HEI2020_TODDLERS_GREENNBEAN <dbl>, HEI2020_TODDLERS_TOTALPRO <dbl>,
## # HEI2020_TODDLERS_SEAPLANTPRO <dbl>, HEI2020_TODDLERS_WHOLEGRAIN <dbl>,
## # HEI2020_TODDLERS_DAIRY <dbl>, HEI2020_TODDLERS_FATTYACID <dbl>,
## # HEI2020_TODDLERS_REFINEDGRAIN <dbl>, HEI2020_TODDLERS_SODIUM <dbl>, …
HEI2020_TODDLERS_ASA24(ASA24_exp, RECALL_SUMMARIZE = FALSE)
## [1] "RECALL_SUMMARIZE is FALSE, skipping summarization step..."
## [1] "The results should be only used for HEI-Toddlers 2020 (age 1-2 years), not for HEI-2020 (non-toddlers, age > 2 years)."
## # A tibble: 42 × 17
## UserName UserID TOTALKCAL HEI2020_TODDLERS_ALL HEI2020_TODDLERS_TOT…¹
## <dbl> <chr> <dbl> <dbl> <dbl>
## 1 1 e6541891-8a22… 2019. 60.8 1.44
## 2 1 e6541891-8a22… 1010. 60.8 1.44
## 3 2 dbb278b0-b589… 1247. 55.2 5
## 4 2 dbb278b0-b589… 623. 55.2 5
## 5 3 f0115426-e6f8… 2206. 47.8 5
## 6 3 f0115426-e6f8… 1103. 47.8 5
## 7 4 337d84a7-3bff… 2095. 50.7 0
## 8 4 337d84a7-3bff… 1047. 50.7 0
## 9 5 998f098a-8584… 1209. 39.3 0
## 10 5 998f098a-8584… 605. 39.3 0
## # ℹ 32 more rows
## # ℹ abbreviated name: ¹HEI2020_TODDLERS_TOTALFRT
## # ℹ 12 more variables: HEI2020_TODDLERS_FRT <dbl>, HEI2020_TODDLERS_VEG <dbl>,
## # HEI2020_TODDLERS_GREENNBEAN <dbl>, HEI2020_TODDLERS_TOTALPRO <dbl>,
## # HEI2020_TODDLERS_SEAPLANTPRO <dbl>, HEI2020_TODDLERS_WHOLEGRAIN <dbl>,
## # HEI2020_TODDLERS_DAIRY <dbl>, HEI2020_TODDLERS_FATTYACID <dbl>,
## # HEI2020_TODDLERS_REFINEDGRAIN <dbl>, HEI2020_TODDLERS_SODIUM <dbl>, …
Calculating HEI2015 for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
HEI2015_ASA24(DATA_PATH)
#Use the example data
data("ASA24_exp")
HEI2015_ASA24(ASA24_exp)
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## # A tibble: 21 × 17
## # Groups: UserName, UserID [21]
## UserName UserID TOTALKCAL HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 e6541891-8a22-49… 1514. 69.8 1.26 2.45
## 2 2 dbb278b0-b589-44… 935. 52.8 5 0
## 3 3 f0115426-e6f8-4c… 1655. 51.2 5 5
## 4 4 337d84a7-3bff-48… 1571. 47.5 0 0
## 5 5 998f098a-8584-49… 907. 45.2 0 0
## 6 6 aae330db-8f22-4d… 1271. 52.9 3.78 5
## 7 7 76e0f3e1-8e17-49… 2662. 48.4 1.51 2.23
## 8 8 24de994f-e06a-41… 2039. 69.0 2.76 5
## 9 9 8f61ae64-6a82-4f… 1469. 70.9 5 5
## 10 10 b47ab1b8-e62b-4b… 1636. 61.2 2.64 0
## # ℹ 11 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## # HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## # HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## # HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## # HEI2015_SATFAT <dbl>
Calculating aMED for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
MED_ASA24(DATA_PATH)
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 21 × 13
## # Groups: UserName, UserID [21]
## UserName UserID MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 e6541891-… 7 7 1 1 1 1
## 2 2 dbb278b0-… 6 6 1 1 1 1
## 3 3 f0115426-… 5 5 1 1 1 0
## 4 4 337d84a7-… 6 6 0 1 1 1
## 5 5 998f098a-… 2 2 0 0 1 0
## 6 6 aae330db-… 4 4 1 1 0 0
## 7 7 76e0f3e1-… 5 5 1 1 1 0
## 8 8 24de994f-… 8 7 1 1 1 1
## 9 9 8f61ae64-… 6 6 1 1 1 1
## 10 10 b47ab1b8-… 6 6 1 1 1 1
## # ℹ 11 more rows
## # ℹ 5 more variables: MED_NUTS <dbl>, MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## # MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating DII for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
DII_ASA24(DATA_PATH)
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## # A tibble: 21 × 32
## # Groups: UserName [21]
## UserName UserID DII_ALL DII_NOETOH ALCOHOL VITB12 VITB6 BCAROTENE CAFFEINE
## <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 e6541… -0.0932 -0.371 0.278 -0.0766 0.127 -0.408 0.0848
## 2 2 dbb27… 2.93 2.65 0.278 -0.0982 0.136 0.295 0.0845
## 3 3 f0115… 1.39 1.11 0.278 -0.0185 -0.214 0.549 0.0850
## 4 4 337d8… 1.28 1.00 0.278 0.00997 -0.185 0.538 0.0850
## 5 5 998f0… 3.84 3.56 0.274 -0.0934 0.239 0.565 0.0844
## 6 6 aae33… 2.29 2.01 0.278 -0.0846 -0.359 0.554 0.0846
## 7 7 76e0f… 1.05 0.768 0.278 -0.0781 -0.206 -0.125 0.0839
## 8 8 24de9… 0.178 0.409 -0.231 -0.0608 -0.252 0.459 0.0850
## 9 9 8f61a… 0.805 0.527 0.278 -0.0908 0.134 0.564 0.0847
## 10 10 b47ab… 1.98 1.70 0.278 -0.0949 0.184 0.537 0.0845
## # ℹ 11 more rows
## # ℹ 23 more variables: CARB <dbl>, CHOLES <dbl>, KCAL <dbl>, TOTALFAT <dbl>,
## # FIBER <dbl>, FOLICACID <dbl>, IRON <dbl>, MG <dbl>, MUFA <dbl>,
## # NIACIN <dbl>, N3FAT <dbl>, N6FAT <dbl>, PROTEIN <dbl>, PUFA <dbl>,
## # RIBOFLAVIN <dbl>, SATFAT <dbl>, SE <dbl>, THIAMIN <dbl>, VITA <dbl>,
## # VITC <dbl>, VITD <dbl>, VITE <dbl>, ZN <dbl>
Calculating DASH for ASA24
DATA_PATH = "/Users/james/Desktop/data/items.csv"
DASH_ASA24(DATA_PATH)
#Use the example data
data("ASA24_exp_detailed")
DASH_ASA24(ASA24_exp_detailed)
## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no skim milk code is provided, the default skim milk code from 17-18 FNDDS file is used.
## Since no low-fat cheese code is provided, the default low-fat cheese code from 17-18 FNDDS file is used.
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 21 × 11
## # Groups: UserName, UserID [21]
## UserName UserID DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 THR01 e6541891-8a22-4… 28 5 5 5 5
## 2 THR02 dbb278b0-b589-4… 32 5 5 5 5
## 3 THR03 f0115426-e6f8-4… 28 5 5 5 5
## 4 THR04 337d84a7-3bff-4… 28 1 5 5 5
## 5 THR05 998f098a-8584-4… 16 1 1 1 5
## 6 THR06 aae330db-8f22-4… 24 5 5 1 1
## 7 THR07 76e0f3e1-8e17-4… 28 5 5 1 5
## 8 THR08 24de994f-e06a-4… 36 5 5 5 5
## 9 THR09 8f61ae64-6a82-4… 28 5 5 5 5
## 10 THR10 b47ab1b8-e62b-4… 36 5 5 5 5
## # ℹ 11 more rows
## # ℹ 4 more variables: DASH_LOWF_DAIRY <dbl>, DASH_SODIUM <dbl>,
## # DASH_REDPROC_MEAT <dbl>, DASH_SSB_FRTJ <dbl>
Calculating AHEI for ASA24
DATA_PATH = "/Users/james/Desktop/data/items.csv"
AHEI_F_ASA24(DATA_PATH)
AHEI_M_ASA24(DATA_PATH)
#Use the example data
data("ASA24_exp_detailed")
AHEI_F_ASA24(ASA24_exp_detailed) # for participants who are all female
## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## Reminder: this AHEI index is for female only. Please stratify your data first and provide female only data.
## # A tibble: 21 × 15
## # Groups: UserName, UserID [21]
## UserName UserID AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN_F
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 THR01 e6541891-8a22-… 52.2 49.7 5.36 0.988 6.74
## 2 THR02 dbb278b0-b589-… 44.9 42.4 6.94 0 0.302
## 3 THR03 f0115426-e6f8-… 39.1 36.6 9.24 2.48 1.03
## 4 THR04 337d84a7-3bff-… 52.7 50.2 3.84 0 3.80
## 5 THR05 998f098a-8584-… 46.1 36.7 0 0 2.06
## 6 THR06 aae330db-8f22-… 45.1 42.6 3.16 2.56 0
## 7 THR07 76e0f3e1-8e17-… 51.8 49.3 7.66 1.58 3.24
## 8 THR08 24de994f-e06a-… 72.1 65.3 2.62 2.97 10
## 9 THR09 8f61ae64-6a82-… 48.6 46.1 0.202 3.16 2.10
## 10 THR10 b47ab1b8-e62b-… 58.6 56.1 5.27 0 10
## # ℹ 11 more rows
## # ℹ 8 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## # AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_SODIUM <dbl>,
## # AHEI_ALCOHOL_F <dbl>, SSB_FRTJ_SERV <dbl>
AHEI_M_ASA24(ASA24_exp_detailed) # for participants who are all male
## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## Reminder: this AHEI index is for male only. Please stratify your data first and provide male only data.
## # A tibble: 21 × 14
## # Groups: UserName, UserID [21]
## UserName UserID AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN_M
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 THR01 e6541891-8a22-… 51.1 48.6 5.36 0.988 5.62
## 2 THR02 dbb278b0-b589-… 44.9 42.4 6.94 0 0.251
## 3 THR03 f0115426-e6f8-… 39.0 36.5 9.24 2.48 0.857
## 4 THR04 337d84a7-3bff-… 52.1 49.6 3.84 0 3.17
## 5 THR05 998f098a-8584-… 45.7 36.3 0 0 1.72
## 6 THR06 aae330db-8f22-… 45.1 42.6 3.16 2.56 0
## 7 THR07 76e0f3e1-8e17-… 51.2 48.7 7.66 1.58 2.70
## 8 THR08 24de994f-e06a-… 75.3 65.3 2.62 2.97 10
## 9 THR09 8f61ae64-6a82-… 48.2 45.7 0.202 3.16 1.75
## 10 THR10 b47ab1b8-e62b-… 58.6 56.1 5.27 0 10
## # ℹ 11 more rows
## # ℹ 7 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## # AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_SODIUM <dbl>,
## # AHEI_ALCOHOL_M <dbl>
Calculating HEI2015 for DHQ3
DATA_PATH = "/Users/james/Desktop/data/results.csv"
HEI2015_DHQ3(DATA_PATH)
#Use the example data
data("DHQ3_exp")
HEI2015_DHQ3(DHQ3_exp)
## # A tibble: 23 × 16
## `Respondent ID` TOTALKCAL HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1849. 74.7 3.14 5
## 2 2 1109. 77.9 4.96 5
## 3 3 2134. 69.5 5 5
## 4 4 1170. 77.1 5 5
## 5 5 1238. 63.3 5 5
## 6 6 759. 59.5 1.32 1.48
## 7 7 727. 67.9 5 5
## 8 8 1462. 66.7 3.59 5
## 9 9 1080. 72.4 5 5
## 10 10 1552. 55.5 0.684 0.644
## # ℹ 13 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## # HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## # HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## # HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## # HEI2015_SATFAT <dbl>
Calculating aMED for DHQ3
DATA_PATH = "/Users/james/Desktop/data/results.csv"
MED_DHQ3(DATA_PATH)
## # A tibble: 23 × 12
## RESPONDENTID MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 5 5 1 1 1 1
## 2 2 7 7 1 1 1 1
## 3 3 6 6 1 1 1 1
## 4 4 4 4 1 0 1 0
## 5 5 2 2 1 0 0 0
## 6 6 3 3 0 0 1 0
## 7 7 4 4 1 1 0 1
## 8 8 4 4 0 1 0 1
## 9 9 2 1 1 0 0 0
## 10 10 5 5 0 0 1 1
## # ℹ 13 more rows
## # ℹ 5 more variables: MED_NUTS <dbl>, MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## # MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating AHEI for DHQ3
DATA_PATH = "/Users/james/Desktop/data/detail.csv"
AHEI_DHQ3(DATA_PATH)
## # A tibble: 23 × 15
## RESPONDENTID GENDER AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 61.7 59.2 5.36 2.3 7.18
## 2 2 2 68.5 66.0 3.62 2.12 4.84
## 3 3 2 58.3 49.9 10 3.33 2.65
## 4 4 2 46.1 43.6 1.72 2.33 2.99
## 5 5 2 60.4 50.4 2.68 2.75 1.06
## 6 6 2 51.7 48.9 1.58 0.175 3.21
## 7 7 1 54.8 52.3 4.12 3.18 1.48
## 8 8 2 52.8 45.8 4.54 1.8 1.97
## 9 9 2 61.7 51.7 1.58 2.55 0.983
## 10 10 2 54.2 50.6 2.1 0.175 5.44
## # ℹ 13 more rows
## # ℹ 8 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## # AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_TRANS <dbl>,
## # AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating DASH for DHQ3
DATA_PATH = "/Users/james/Desktop/data/detail.csv"
DASH_DHQ3(DATA_PATH)
#Use the example data. Attention: the example data here is DHQ3_exp_detailed, which is different from DHQ3_exp. DHQ3_exp_detailed is only used for DASH_DHQ3
data("DHQ3_exp_detailed")
DASH_DHQ3(DHQ3_exp_detailed)
## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 23 × 10
## `Respondent ID` DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 25 3 4 5 5
## 2 2 29 3 3 5 5
## 3 3 24 5 5 4 3
## 4 4 23 5 1 2 3
## 5 5 25 4 2 2 2
## 6 6 19 1 1 1 3
## 7 7 26 4 4 3 3
## 8 8 20 3 4 4 3
## 9 9 20 4 1 2 1
## 10 10 20 1 2 3 5
## # ℹ 13 more rows
## # ℹ 4 more variables: DASH_LOWF_DAIRY <dbl>, DASH_SODIUM <dbl>,
## # DASH_REDPROC_MEAT <dbl>, DASH_SSB_FRTJ <dbl>
Calculating AHEI for BLOCK
DATA_PATH = "/Users/james/Desktop/block_exp.csv"
AHEI_BLOCK(DATA_PATH)
#Use the example data
data("BLOCK_exp")
AHEI_BLOCK(BLOCK_exp)
## # A tibble: 5 × 15
## RESPONDENTID GENDER AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 48.1 45.6 1.58 3.69 5.01
## 2 2 1 33.5 31.0 0.695 0.527 0.794
## 3 3 1 49.1 39.1 3.94 2.63 5.89
## 4 4 1 47.1 44.6 1.79 5.39 5.17
## 5 5 1 52.5 50.0 6.06 9.18 3.94
## # ℹ 8 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## # AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_TRANS <dbl>,
## # AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating AHEIP for BLOCK
#Use the example data
data("BLOCK_exp")
AHEIP_BLOCK(BLOCK_exp)
## # A tibble: 5 × 11
## RESPONDENTID AHEIP_ALL AHEIP_VEG AHEIP_FRT AHEIP_WHITEREAD AHEIP_FIBER
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 38.3 1.58 3.69 0.351 5.41
## 2 2 26.0 0.695 0.527 0.717 4.42
## 3 3 51.6 3.94 2.63 0.477 8.3
## 4 4 47.4 1.79 5.39 0.756 9.93
## 5 5 62.5 6.06 9.18 2.06 8.45
## # ℹ 5 more variables: AHEIP_TRANS <dbl>, AHEIP_POLYSAT <dbl>,
## # AHEIP_CALCIUM <dbl>, AHEIP_FOLATE <dbl>, AHEIP_IRON <dbl>
Calculating DASH for BLOCK
#Use the example data
data("BLOCK_exp")
DASH_BLOCK(BLOCK_exp)
## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 5 × 25
## RESPONDENTID DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 28 3 2 4 3
## 2 2 19 1 1 5 1
## 3 3 23 2 4 3 5
## 4 4 23 4 3 2 4
## 5 5 28 5 5 1 2
## # ℹ 19 more variables: DASH_LOWF_DAIRY <dbl>, DASH_SODIUM <dbl>,
## # DASH_REDPROC_MEAT <dbl>, DASH_SSB_FRTJ <dbl>, DT_KCAL <dbl>,
## # F_BERRIES <dbl>, F_WHOLE <dbl>, FRT_FRTJ_SERV <dbl>, VEG_SERV <dbl>,
## # NUTSLEG_SERV <dbl>, WGRAIN_SERV <dbl>, LOWF_MILK_SERV <dbl>,
## # YOGURT_SERV <dbl>, LOWF_ICECREAMFROYO_SERV <dbl>, LOWF_CHEESE_SERV <dbl>,
## # LOWF_DAIRY_SERV <dbl>, SODIUM_SERV <dbl>, REDPROC_MEAT_SERV <dbl>,
## # SSB_FRTJ_SERV <dbl>
Calculating DII for BLOCK
## # A tibble: 5 × 34
## RESPONDENTID DII_ALL DII_NOETOH ALCOHOL VITB12 VITB6 BCAROTENE CAFFEINE
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 3.74 3.46 0.278 -0.0682 -0.0157 0.464 0.0850
## 2 2 2.65 2.37 0.278 -0.0428 0.0928 0.552 0.0845
## 3 3 -1.59 -1.72 0.124 0.0986 -0.346 0.403 0.0849
## 4 4 -1.13 -1.41 0.278 -0.0588 -0.192 -0.0426 0.0842
## 5 5 -0.724 -1.00 0.278 -0.0758 -0.204 -0.584 0.0845
## # ℹ 26 more variables: CARB <dbl>, CHOLES <dbl>, KCAL <dbl>, TOTALFAT <dbl>,
## # FIBER <dbl>, FOLICACID <dbl>, IRON <dbl>, MG <dbl>, MUFA <dbl>,
## # NIACIN <dbl>, N3FAT <dbl>, N6FAT <dbl>, PROTEIN <dbl>, PUFA <dbl>,
## # RIBOFLAVIN <dbl>, SATFAT <dbl>, SE <dbl>, THIAMIN <dbl>, TRANSFAT <dbl>,
## # VITA <dbl>, VITC <dbl>, VITD <dbl>, VITE <dbl>, ZN <dbl>, TEA <dbl>,
## # ISOFLAVONES <dbl>
Calculating HEI2015 for BLOCK
#Use the example data
data("BLOCK_exp")
HEI2015_BLOCK(BLOCK_exp)
## # A tibble: 5 × 15
## RESPONDENTID HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT HEI2015_VEG
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 76.6 5 5 2.57
## 2 2 42.0 0.986 1.08 1.32
## 3 3 56.0 2.25 3.56 2.42
## 4 4 48.7 5 5 1.11
## 5 5 65.7 5 5 5
## # ℹ 10 more variables: HEI2015_GREENNBEAN <dbl>, HEI2015_TOTALPRO <dbl>,
## # HEI2015_SEAPLANTPRO <dbl>, HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>,
## # HEI2015_FATTYACID <dbl>, HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>,
## # HEI2015_ADDEDSUGAR <dbl>, HEI2015_SATFAT <dbl>
Calculating aMED for BLOCK
## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 5 × 12
## RESPONDENTID MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 6 6 1 0 1 1
## 2 2 4 4 0 0 0 1
## 3 3 7 6 0 1 1 1
## 4 4 3 3 1 1 1 0
## 5 5 4 4 1 1 0 0
## # ℹ 5 more variables: MED_NUTS <dbl>, MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## # MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating HEI2020 for your own dietary assessment tool
#Use the example data
data("HEI2020_VALIDATION")
HEI2020(SERV_DATA = HEI2020_VALIDATION,RESPONDENTID = HEI2020_VALIDATION$id,AGE = HEI2020_VALIDATION$age,TOTALKCAL_HEI2020 = HEI2020_VALIDATION$kcal,TOTALFRT_SERV_HEI2020 = HEI2020_VALIDATION$total_fruit,FRT_SERV_HEI2020 = HEI2020_VALIDATION$whole_fruit,VEG_SERV_HEI2020 = HEI2020_VALIDATION$total_vegetable,GREENNBEAN_SERV_HEI2020 = HEI2020_VALIDATION$green_and_bean,TOTALPRO_SERV_HEI2020 = HEI2020_VALIDATION$total_protein,SEAPLANTPRO_SERV_HEI2020 = HEI2020_VALIDATION$seafood_plant_protein,WHOLEGRAIN_SERV_HEI2020 = HEI2020_VALIDATION$whole_grain,DAIRY_SERV_HEI2020 = HEI2020_VALIDATION$dairy,FATTYACID_SERV_HEI2020 = HEI2020_VALIDATION$fatty_acid,REFINEDGRAIN_SERV_HEI2020 = HEI2020_VALIDATION$refined_grain,SODIUM_SERV_HEI2020 = HEI2020_VALIDATION$sodium,ADDEDSUGAR_SERV_HEI2020 = HEI2020_VALIDATION$added_sugar,SATFAT_SERV_HEI2020 = HEI2020_VALIDATION$saturated_fat)
## # A tibble: 22 × 17
## RESPONDENTID AGE TOTALKCAL_HEI2020 HEI2020_ALL HEI2020_TOTALFRT HEI2020_FRT
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 18 1000 40 0 0
## 2 2 18 1000 42 0.5 0.5
## 3 3 18 1000 44 1 1
## 4 4 18 1000 46 1.5 1.5
## 5 5 18 1000 48 2 2
## 6 6 18 1000 50 2.5 2.5
## 7 7 18 1000 52 3 3
## 8 8 18 1000 54 3.5 3.5
## 9 9 18 1000 56 4 4
## 10 10 18 1000 58 4.5 4.5
## # ℹ 12 more rows
## # ℹ 11 more variables: HEI2020_VEG <dbl>, HEI2020_GREENNBEAN <dbl>,
## # HEI2020_TOTALPRO <dbl>, HEI2020_SEAPLANTPRO <dbl>,
## # HEI2020_WHOLEGRAIN <dbl>, HEI2020_DAIRY <dbl>, HEI2020_FATTYACID <dbl>,
## # HEI2020_REFINEDGRAIN <dbl>, HEI2020_SODIUM <dbl>, HEI2020_ADDEDSUGAR <dbl>,
## # HEI2020_SATFAT <dbl>
Calculating HEI2015 for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
HEI2015(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$TOTALKCAL, SERV_DATA$VEG_SERV, SERV_DATA$FRT_SERV, SERV_DATA$WGRAIN_SERV, SERV_DATA$NUTSLEG_SERV, SERV_DATA$N3FAT_SERV, SERV_DATA$PUFA_SERV, SERV_DATA$SSB_FRTJ_SERV, SERV_DATA$REDPROC_MEAT_SERV, SERV_DATA$TRANS_SERV, SERV_DATA$SODIUM_SERV, SERV_DATA$ALCOHOL_SERV)
#Use the example data
data("SERV_DATA_exp")
HEI2015(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$TOTALKCAL, SERV_DATA_exp$TOTALFRT_SERV_HEI2015_exp, SERV_DATA_exp$FRT_SERV_HEI2015_exp, SERV_DATA_exp$VEG_SERV_HEI2015_exp, SERV_DATA_exp$GREENNBEAN_SERV_HEI2015_exp, SERV_DATA_exp$TOTALPRO_SERV_HEI2015_exp, SERV_DATA_exp$SEAPLANTPRO_SERV_HEI2015_exp, SERV_DATA_exp$WHOLEGRAIN_SERV_HEI2015_exp, SERV_DATA_exp$DAIRY_SERV_HEI2015_exp, SERV_DATA_exp$FATTYACID_SERV_HEI2015_exp, SERV_DATA_exp$REFINEDGRAIN_SERV_HEI2015_exp, SERV_DATA_exp$SODIUM_SERV_HEI2015_exp, SERV_DATA_exp$ADDEDSUGAR_SERV_HEI2015_exp, SERV_DATA_exp$SATFAT_SERV_HEI2015_exp)
## # A tibble: 21 × 16
## RESPONDENTID TOTALKCAL_HEI2015 HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 2019. 69.8 1.26 2.45
## 2 2 1247. 52.8 5 0
## 3 3 2206. 51.2 5 5
## 4 4 2095. 47.5 0 0
## 5 5 1209. 45.2 0 0
## 6 6 1694. 52.9 3.78 5
## 7 7 3549. 48.4 1.51 2.23
## 8 8 2718. 69.0 2.76 5
## 9 9 1959. 70.9 5 5
## 10 10 2181. 61.2 2.64 0
## # ℹ 11 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## # HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## # HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## # HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## # HEI2015_SATFAT <dbl>
Calculating AHEI for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
AHEI(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$GENDER, SERV_DATA$VEG_SERV, SERV_DATA$FRT_SERV, SERV_DATA$WGRAIN_SERV, SERV_DATA$NUTSLEG_SERV, SERV_DATA$N3FAT_SERV, SERV_DATA$PUFA_SERV, SERV_DATA$SSB_FRTJ_SERV, SERV_DATA$REDPROC_MEAT_SERV, SERV_DATA$TRANS_SERV,SODIUM_SERV, SERV_DATA$ALCOHOL_SERV)
#Use the example data
data("SERV_DATA_exp")
AHEI(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$SEX, SERV_DATA_exp$TOTALKCAL, SERV_DATA_exp$VEG_SERV_AHEI_exp, SERV_DATA_exp$FRT_SERV_AHEI_exp, SERV_DATA_exp$WGRAIN_SERV_AHEI_exp, SERV_DATA_exp$NUTSLEG_SERV_AHEI_exp, SERV_DATA_exp$N3FAT_SERV_AHEI_exp, SERV_DATA_exp$PUFA_SERV_AHEI_exp, SERV_DATA_exp$SSB_FRTJ_SERV_AHEI_exp, SERV_DATA_exp$REDPROC_MEAT_SERV_AHEI_exp, SERV_DATA_exp$TRANS_SERV_AHEI_exp, SERV_DATA_exp$SODIUM_SERV_AHEI_exp, SERV_DATA_exp$ALCOHOL_SERV_AHEI_exp)
## # A tibble: 21 × 15
## RESPONDENTID GENDER AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 56.9 54.4 2.68 0.988 5.62
## 2 2 1 43.4 40.9 3.47 0 0.251
## 3 3 1 34.3 31.8 4.62 2.48 0.857
## 4 4 1 50.1 47.6 1.92 0 3.17
## 5 5 1 47.3 37.9 0 0 1.72
## 6 6 1 52.2 49.7 1.58 2.56 0
## 7 7 1 47.4 44.9 3.83 1.58 2.70
## 8 8 1 80.2 70.2 1.31 2.97 10
## 9 9 1 57.0 54.5 0.101 3.16 1.75
## 10 10 1 56.0 53.5 2.63 0 10
## # ℹ 11 more rows
## # ℹ 8 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## # AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_TRANS <dbl>,
## # AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating DASH for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
DASH(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$TOTALKCAL_DASH, SERV_DATA$FRT_FRTJ_SERV_DASH, SERV_DATA$VEG_SERV_DASH, SERV_DATA$NUTSLEG_SERV_DASH, SERV_DATA$WGRAIN_SERV_DASH, SERV_DATA$LOWF_DAIRY_SERV_DASH, SERV_DATA$SODIUM_SERV_DASH, SERV_DATA$REDPROC_MEAT_SERV_DASH, SERV_DATA$SSB_FRTJ_SERV_DASH)
#Use the example data
data("SERV_DATA_exp")
DASH(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$TOTALKCAL, SERV_DATA_exp$FRT_FRTJ_SERV_DASH_exp, SERV_DATA_exp$VEG_SERV_DASH_exp, SERV_DATA_exp$NUTSLEG_SERV_DASH_exp, SERV_DATA_exp$WGRAIN_SERV_DASH_exp, SERV_DATA_exp$LOWF_DAIRY_SERV_DASH_exp, SERV_DATA_exp$SODIUM_SERV_DASH_exp, SERV_DATA_exp$REDPROC_MEAT_SERV_DASH_exp, SERV_DATA_exp$SSB_FRTJ_SERV_DASH_exp)
## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 21 × 10
## RESPONDENTID DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 29 2 3 5 5
## 2 2 22 5 3 2 2
## 3 3 18 5 5 2 2
## 4 4 25 1 2 3 5
## 5 5 16 1 1 1 3
## 6 6 23 4 2 1 1
## 7 7 26 3 4 1 4
## 8 8 29 4 1 3 5
## 9 9 27 5 1 5 3
## 10 10 29 3 3 4 5
## # ℹ 11 more rows
## # ℹ 4 more variables: DASH_LOWF_DAIRY <dbl>, DASH_SODIUM <dbl>,
## # DASH_REDPROC_MEAT <dbl>, DASH_SSB_FRTJ <dbl>
Calculating DASHI for your own dietary assessment tool
#Use the example data
data("DASH_trial")
DASHI(SERV_DATA = DASH_trial, RESPONDENTID = DASH_trial$Diet_Type,TOTALKCAL_DASHI = DASH_trial$Kcal, TOTAL_FAT_DASHI = DASH_trial$Totalfat_Percent, SAT_FAT_DASHI = DASH_trial$Satfat_Percent, PROTEIN_DASHI = DASH_trial$Protein_Percent, CHOLESTEROL_DASHI = DASH_trial$Cholesterol, FIBER_DASHI = DASH_trial$Fiber, POTASSIUM_DASHI = DASH_trial$Potassium, MAGNESIUM_DASHI = DASH_trial$Magnesium, CALCIUM_DASHI = DASH_trial$Calcium, SODIUM_DASHI = DASH_trial$Sodium)
## # A tibble: 5 × 12
## RESPONDENTID DASHI_ALL TOTALKCAL_DASHI DASHI_TOTAL_FAT DASHI_SAT_FAT
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 DASH 7.79 2100 1 0.9
## 2 DASH_lowSodium 8.79 2100 1 0.9
## 3 DASH_MedSodium 8.76 2100 1 0.9
## 4 DASH_HighSodium 7.79 2100 1 0.9
## 5 Control 0.833 2100 0.130 0.19
## # ℹ 7 more variables: DASHI_PROTEIN <dbl>, DASHI_CHOLESTEROL <dbl>,
## # DASHI_FIBER <dbl>, DASHI_POTASSIUM <dbl>, DASHI_MAGNESIUM <dbl>,
## # DASHI_CALCIUM <dbl>, DASHI_SODIUM <dbl>
Calculating aMED for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
MED(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$FRT_FRTJ_SERV, SERV_DATA$VEG_SERV, SERV_DATA$WGRAIN_SERV, SERV_DATA$LEGUMES_SERV, SERV_DATA$NUTS_SERV,FISH_SERV, SERV_DATA$REDPROC_MEAT_SERV, SERV_DATA$MONSATFAT_SERV, SERV_DATA$ALCOHOL_SERV)
#Use the example data
data("SERV_DATA_exp")
MED(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$FRT_FRTJ_SERV_MED_exp, SERV_DATA_exp$VEG_SERV_MED_exp, SERV_DATA_exp$WGRAIN_SERV_MED_exp, SERV_DATA_exp$LEGUMES_SERV_MED_exp, SERV_DATA_exp$NUTS_SERV_MED_exp, SERV_DATA_exp$FISH_SERV_MED_exp, SERV_DATA_exp$REDPROC_MEAT_SERV_MED_exp, SERV_DATA_exp$MONSATFAT_SERV_MED_exp, SERV_DATA_exp$ALCOHOL_SERV_MED_exp)
## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 21 × 12
## RESPONDENTID MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 6 6 0 1 1 1
## 2 2 4 4 1 1 0 1
## 3 3 4 4 1 1 0 0
## 4 4 4 4 0 0 1 1
## 5 5 0 0 0 0 0 0
## 6 6 3 3 1 0 0 0
## 7 7 4 4 1 1 1 0
## 8 8 5 5 1 0 1 0
## 9 9 5 5 1 0 1 1
## 10 10 4 4 1 0 1 1
## # ℹ 11 more rows
## # ℹ 5 more variables: MED_NUTS <dbl>, MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## # MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating MEDI for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
MEDI(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$OLIVE_OIL_SERV_MEDI, SERV_DATA$FRT_SERV_MEDI, SERV_DATA$VEG_SERV_MEDI, SERV_DATA$LEGUMES_SERV_MEDI, SERV_DATA$NUTS_SERV_MEDI, SERV_DATA$FISH_SEAFOOD_SERV_MEDI, SERV_DATA$ALCOHOL_SERV_MEDI, SERV_DATA$SSB_SERV_MEDI, SERV_DATA$SWEETS_SERV_MEDI, SERV_DATA$DISCRET_FAT_SERV_MEDI, SERV_DATA$REDPROC_MEAT_SERV_MEDI)
#Use the example data
data("PREDIMED_trial")
# MEDI is 0/1 point scoring criteria.
MEDI(
SERV_DATA = PREDIMED_trial,
RESPONDENTID = PREDIMED_trial$Diet_Type,
OLIVE_OIL_SERV_MEDI = PREDIMED_trial$Virgin_Oliveoil,
FRT_SERV_MEDI = PREDIMED_trial$Fruits,
VEG_SERV_MEDI = PREDIMED_trial$Vegetables,
LEGUMES_SERV_MEDI = PREDIMED_trial$Legumes,
NUTS_SERV_MEDI = PREDIMED_trial$Total_nuts,
FISH_SEAFOOD_SERV_MEDI = PREDIMED_trial$Fish_Seafood,
ALCOHOL_SERV_MEDI = PREDIMED_trial$Alcohol,
SSB_SERV_MEDI = PREDIMED_trial$Soda_Drinks,
SWEETS_SERV_MEDI = PREDIMED_trial$Sweets,
DISCRET_FAT_SERV_MEDI = PREDIMED_trial$Refined_Oliveoil,
REDPROC_MEAT_SERV_MEDI = PREDIMED_trial$Meat)
## # A tibble: 3 × 14
## RESPONDENTID MEDI_ALL MEDI_NOETOH MEDI_OLIVE_OIL MEDI_FRT MEDI_VEG
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Med_Oliveoil 8 7 1 1 1
## 2 Med_Nuts 7 7 0 1 1
## 3 Control 5 5 0 0 1
## # ℹ 8 more variables: MEDI_LEGUMES <dbl>, MEDI_NUTS <dbl>, MEDI_FISH <dbl>,
## # MEDI_ALCOHOL <dbl>, MEDI_SSB <dbl>, MEDI_SWEETS <dbl>,
## # MEDI_DISCRET_FAT <dbl>, MEDI_REDPROC_MEAT <dbl>
# MEDI_V2 is 5 point scoring criteria
MEDI_V2(
SERV_DATA = PREDIMED_trial,
RESPONDENTID = PREDIMED_trial$Diet_Type,
OLIVE_OIL_SERV_MEDI = PREDIMED_trial$Virgin_Oliveoil,
FRT_SERV_MEDI = PREDIMED_trial$Fruits,
VEG_SERV_MEDI = PREDIMED_trial$Vegetables,
LEGUMES_SERV_MEDI = PREDIMED_trial$Legumes,
NUTS_SERV_MEDI = PREDIMED_trial$Total_nuts,
FISH_SEAFOOD_SERV_MEDI = PREDIMED_trial$Fish_Seafood,
ALCOHOL_SERV_MEDI = PREDIMED_trial$Alcohol,
SSB_SERV_MEDI = PREDIMED_trial$Soda_Drinks,
SWEETS_SERV_MEDI = PREDIMED_trial$Sweets,
DISCRET_FAT_SERV_MEDI = PREDIMED_trial$Refined_Oliveoil,
REDPROC_MEAT_SERV_MEDI = PREDIMED_trial$Meat
)
## # A tibble: 3 × 14
## RESPONDENTID MEDI_V2_ALL MEDI_V2_NOETOH MEDI_OLIVE_OIL MEDI_FRT MEDI_VEG
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Med_Oliveoil 42.5 35.0 5 5 5
## 2 Med_Nuts 36.7 30.8 3.19 5 5
## 3 Control 33.7 29.1 2.27 4.92 5
## # ℹ 8 more variables: MEDI_LEGUMES <dbl>, MEDI_NUTS <dbl>, MEDI_FISH <dbl>,
## # MEDI_ALCOHOL <dbl>, MEDI_SSB <dbl>, MEDI_SWEETS <dbl>,
## # MEDI_DISCRET_FAT <dbl>, MEDI_REDPROC_MEAT <dbl>
Calculating DII for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
DII(SERV_DATA, SERV_DATA$RESPONDENTID, REPEATNUM=1, SERV_DATA$ALCOHOL_DII, SERV_DATA$VITB12_DII, SERV_DATA$VITB6_DII, SERV_DATA$BCAROTENE_DII, SERV_DATA$CAFFEINE_DII, SERV_DATA$CARB_DII, SERV_DATA$CHOLES_DII, SERV_DATA$KCAL_DII, SERV_DATA$EUGENOL_DII, SERV_DATA$TOTALFAT_DII, SERV_DATA$FIBER_DII, SERV_DATA$FOLICACID_DII, SERV_DATA$GARLIC_DII, SERV_DATA$GINGER_DII, SERV_DATA$IRON_DII, SERV_DATA$MG_DII, SERV_DATA$MUFA_DII, SERV_DATA$NIACIN_DII, SERV_DATA$N3FAT_DII, SERV_DATA$N6FAT_DII, SERV_DATA$ONION_DII, SERV_DATA$PROTEIN_DII, SERV_DATA$PUFA_DII, SERV_DATA$RIBOFLAVIN_DII, SERV_DATA$SAFFRON_DII, SERV_DATA$SATFAT_DII, SERV_DATA$SE_DII, SERV_DATA$THIAMIN_DII, SERV_DATA$TRANSFAT_DII, SERV_DATA$TURMERIC_DII, SERV_DATA$VITA_DII, SERV_DATA$VITC_DII, SERV_DATA$VITD_DII, SERV_DATA$VITE_DII, SERV_DATA$ZN_DII, SERV_DATA$TEA_DII, SERV_DATA$FLA3OL_DII, SERV_DATA$FLAVONES_DII, SERV_DATA$FLAVONOLS_DII, SERV_DATA$FLAVONONES_DII, SERV_DATA$ANTHOC_DII, SERV_DATA$ISOFLAVONES_DII, SERV_DATA$PEPPER_DII, SERV_DATA$THYME_DII, SERV_DATA$ROSEMARY_DII)
#Use the example data
data("DHQ3_exp")
DII(DHQ3_exp, DHQ3_exp$`Respondent ID`, 1, DHQ3_exp$`Alcohol (g)`, DHQ3_exp$`Vitamin B12 (mcg)`, DHQ3_exp$`Vitamin B6 (mg)`)
## It is normal to see warnings if you do not provide all arguments using DII. The algorithm will only count the arguments you enter to calculate the DII. All warnings are about the first column you don't use. For example, if you only entered alcohol, vitamin b12, and vitamin b6, all warnings would remind you that bcarotene is not found.
## Warning: Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## # A tibble: 23 × 49
## # Groups: RESPONDENTID [23]
## RESPONDENTID DII_ALL DII_NOETOH REPEATNUM ALCOHOL_DII VITB12_DII VITB6_DII
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 0.0479 -0.230 1 0.278 -0.0232 -0.207
## 2 2 0.208 -0.0697 1 0.278 -0.0855 0.0157
## 3 3 -0.115 -0.384 1 0.270 -0.0361 -0.348
## 4 4 0.0194 -0.258 1 0.278 -0.0486 -0.210
## 5 5 0.277 0.0425 1 0.234 -0.0760 0.119
## 6 6 0.448 0.170 1 0.278 -0.0949 0.265
## 7 7 0.348 0.0699 1 0.278 -0.0869 0.157
## 8 8 -0.0124 -0.286 1 0.274 -0.0574 -0.229
## 9 9 0.101 -0.0525 1 0.153 -0.0682 0.0157
## 10 10 0.170 -0.108 1 0.277 -0.0297 -0.0778
## # ℹ 13 more rows
## # ℹ 42 more variables: BCAROTENE_DII <dbl>, CAFFEINE_DII <int>, CARB_DII <int>,
## # CHOLES_DII <int>, KCAL_DII <int>, EUGENOL_DII <int>, TOTALFAT_DII <int>,
## # FIBER_DII <int>, FOLICACID_DII <int>, GARLIC_DII <int>, GINGER_DII <int>,
## # IRON_DII <int>, MG_DII <int>, MUFA_DII <int>, NIACIN_DII <int>,
## # N3FAT_DII <int>, N6FAT_DII <int>, ONION_DII <int>, PROTEIN_DII <int>,
## # PUFA_DII <int>, RIBOFLAVIN_DII <int>, SAFFRON_DII <int>, …
Calculating ACS2020_V1 or ACS2020_V2 for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
ACS2020_V1(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$GENDER, SERV_DATA$VEG_SERV_ACS2020, SERV_DATA$VEG_ITEMS_SERV_ACS2020, SERV_DATA$FRT_SERV_ACS2020, SERV_DATA$FRT_ITEMS_SERV_ACS2020, SERV_DATA$WGRAIN_SERV_ACS2020, SERV_DATA$SSB_FRTJ_SERV_ACS2020, SERV_DATA$REDPROC_MEAT_SERV_ACS2020, SERV_DATA$HPFRG_RATIO_SERV_ACS2020)
ACS2020_V2(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$GENDER, SERV_DATA$TOTALKCAL_ACS2020, SERV_DATA$VEG_SERV_ACS2020, SERV_DATA$VEG_ITEMS_SERV_ACS2020, SERV_DATA$FRT_SERV_ACS2020, SERV_DATA$FRT_ITEMS_SERV_ACS2020, SERV_DATA$WGRAIN_SERV_ACS2020, SERV_DATA$SSB_FRTJ_SERV_ACS2020, SERV_DATA$REDPROC_MEAT_SERV_ACS2020, SERV_DATA$HPFRG_SERV_ACS2020)
Calculating PHDI for your own dietary assessment tool
#Use the example data
data("PHDI_VALIDATION")
PHDI(SERV_DATA=PHDI_VALIDATION, PHDI_VALIDATION$id, PHDI_VALIDATION$gender, PHDI_VALIDATION$TOTALKCAL_PHDI, PHDI_VALIDATION$WGRAIN_SERV_PHDI, PHDI_VALIDATION$STARCHY_VEG_SERV_PHDI, PHDI_VALIDATION$VEG_SERV_PHDI, PHDI_VALIDATION$FRT_SERV_PHDI, PHDI_VALIDATION$DAIRY_SERV_PHDI, PHDI_VALIDATION$REDPROC_MEAT_SERV_PHDI, PHDI_VALIDATION$POULTRY_SERV_PHDI, PHDI_VALIDATION$EGG_SERV_PHDI, PHDI_VALIDATION$FISH_SERV_PHDI, PHDI_VALIDATION$NUTS_SERV_PHDI, PHDI_VALIDATION$LEGUMES_SERV_PHDI, PHDI_VALIDATION$SOY_SERV_PHDI, PHDI_VALIDATION$ADDED_FAT_UNSAT_SERV_PHDI, PHDI_VALIDATION$ADDED_FAT_SAT_TRANS_SERV_PHDI, PHDI_VALIDATION$ADDED_SUGAR_SERV_PHDI)
## # A tibble: 26 × 19
## RESPONDENTID GENDER PHDI_ALL TOTALKCAL_PHDI PHDI_WGRAIN PHDI_STARCHY_VEG
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 2 0 2000 0 0
## 2 2 2 0 2000 0 0
## 3 3 2 14 2000 1 1
## 4 4 2 28 2000 2 2
## 5 5 2 42 2000 3 3
## 6 6 2 56 2000 4 4
## 7 7 2 70 2000 5 5
## 8 8 2 84 2000 6 6
## 9 9 2 98 2000 7 7
## 10 10 2 112 2000 8 8
## # ℹ 16 more rows
## # ℹ 13 more variables: PHDI_VEG <dbl>, PHDI_FRT <dbl>, PHDI_DAIRY <dbl>,
## # PHDI_REDPROC_MEAT <dbl>, PHDI_POULTRY <dbl>, PHDI_EGG <dbl>,
## # PHDI_FISH <dbl>, PHDI_NUTS <dbl>, PHDI_LEGUMES <dbl>, PHDI_SOY <dbl>,
## # PHDI_ADDED_FAT_UNSAT <dbl>, PHDI_ADDED_FAT_SAT <dbl>,
## # PHDI_ADDED_SUGAR <dbl>
Merge 2 dietary index results together
data(NHANES_20152016)
data(NHANES_20172018)
# HEI_NHANES_FPED
## 2017-2018 day 1 and day 2
HEI2020_NHANES_FPED_1718 = HEI2020_NHANES_FPED(
FPED_PATH=NHANES_20172018$FPED,
NUTRIENT_PATH=NHANES_20172018$NUTRIENT,
DEMO_PATH=NHANES_20172018$DEMO,
FPED_PATH2=NHANES_20172018$FPED2,
NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)
## 2015-2016 day 1 and day 2
HEI2020_NHANES_FPED_1516 = HEI2020_NHANES_FPED(
FPED_PATH=NHANES_20152016$FPED,
NUTRIENT_PATH=NHANES_20152016$NUTRIENT,
DEMO_PATH=NHANES_20152016$DEMO,
FPED_PATH2=NHANES_20152016$FPED2,
NUTRIENT_PATH2=NHANES_20152016$NUTRIENT2)
# Now, merge the two datasets
HEI2020_NHANES_FPED_17181516 = rbind(HEI2020_NHANES_FPED_1718, HEI2020_NHANES_FPED_1516)
# Save the result on your computer
# HEI2020_NHANES_FPED_17181516_df = as.data.frame(HEI2020_NHANES_FPED_17181516)
# readr::write_csv(HEI2020_NHANES_FPED_17181516_df, "/your_output_file_location/HEI2020_NHANES_FPED_17181516_df.csv")
Merge dietary index results with other NHANES data
data(NHANES_20172018)
# HEI_NHANES_FPED
## 2017-2018 day 1 and day 2
HEI2020_NHANES_FPED_1718 = HEI2020_NHANES_FPED(
FPED_PATH=NHANES_20172018$FPED,
NUTRIENT_PATH=NHANES_20172018$NUTRIENT,
DEMO_PATH=NHANES_20172018$DEMO,
FPED_PATH2=NHANES_20172018$FPED2,
NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)
# Blood pressure data
## library(haven)
BP_1718 = read_xpt("BPX_J.XPT")
## library(dplyr)
BP_HEI2020_1718 = inner_join(HEI2020_NHANES_FPED_1718, BP_1718, by="SEQN")
Add dietary index output to your own data and save the result
# Store the output of HEI2015 in "HEI2015_output"
data("SERV_DATA_exp")
HEI2015_output = HEI2015(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$TOTALKCAL, SERV_DATA_exp$TOTALFRT_SERV_HEI2015_exp, SERV_DATA_exp$FRT_SERV_HEI2015_exp, SERV_DATA_exp$VEG_SERV_HEI2015_exp, SERV_DATA_exp$GREENNBEAN_SERV_HEI2015_exp, SERV_DATA_exp$TOTALPRO_SERV_HEI2015_exp, SERV_DATA_exp$SEAPLANTPRO_SERV_HEI2015_exp, SERV_DATA_exp$WHOLEGRAIN_SERV_HEI2015_exp, SERV_DATA_exp$DAIRY_SERV_HEI2015_exp, SERV_DATA_exp$FATTYACID_SERV_HEI2015_exp, SERV_DATA_exp$REFINEDGRAIN_SERV_HEI2015_exp, SERV_DATA_exp$SODIUM_SERV_HEI2015_exp, SERV_DATA_exp$ADDEDSUGAR_SERV_HEI2015_exp, SERV_DATA_exp$SATFAT_SERV_HEI2015_exp)
# Merge the HEI2015_output with your own data by the participant ID
# Here, the HEI2015_output'S participant ID is "RESPONDENTID", while the participant ID in your selected data may vary (SERV_DATA_exp's participant ID UserName) and it should be the column name of SERV_DATA$RESPONDENTID in the HEI2015 function
Merged_HEI2015_output = left_join(SERV_DATA_exp, HEI2015_output, by=c("UserName" = "RESPONDENTID"))
# Save the result on your computer
readr::write_csv(Merged_HEI2015_output, "/your_output_file_location/Merged_HEI2015_output.csv")