dietaryindex.rmdGetting Started
Title: Dietaryindex: A User-Friendly and Versatile R Package for Standardizing Dietary Pattern Analysis in Epidemiological and Clinical Studies
Authors: Jiada James Zhan et al.
The dietaryindex package currently contains the following key functions:
- Generic functions
- 
DI_GM(), Dietary index - Gut Microbiome - 
HEI2020(), Healthy Eating Index 2020 & HEI-Toddlers-2020 - 
HEI2015(), Healthy Eating Index 2015 - 
AHEI(), alternative healthy eating index - 
AHEIP(), alternative healthy eating index - pregnancy - 
DASH(), Dietary Approaches to Stop Hypertension - 
DASHI(), DASH Index in nutrients from the DASH trial - 
MED(), Alternate Mediterranean Diet Score (aMED) - 
MEDI(), Mediterranean diet in serving sizes from the PREDIMED trial - 
DII(), Dietary Inflammation Index - 
ACS2020_V1(), American Cancer Society 2020 diet score - 
ACS2020_V2(), Alternate calculation method of the American Cancer Society 2020 diet score, intended for use when percent calories from highly processed foods and refined grains is not available (uses daily servings per 1000 calories instead) - 
PHDI(), Planetary Health Diet Index from the EAT-Lancet Commission 
 - 
 - NHANES
- For NHANES data starting at the 2005-2006 cycle
- 
DI_GM_NHANES_FPED(), Calculating DI_GM with 1 step using the NHANES_FPED data - 
HEI2020_NHANES_FPED(), Calculating HEI2020 & HEI-Toddlers-2020 with 1 step using the NHANES_FPED datasets - 
HEI2015_NHANES_FPED(), Calculating HEI2015 with 1 step using the NHANES_FPED data - 
AHEI_NHANES_FPED(), Calculating AHEI with 1 step using the NHANES_FPED data - 
DASH_NHANES_FPED(), Calculating DASH (quintile-based) with 1 step using the NHANES_FPED data - 
DASHI_NHANES_FPED(), Calculating DASHI (nutrient-based from the DASH trial) with 1 step using the NHANES_FPED data - 
MED_NHANES_FPED(), Calculating aMED (median-based) with 1 step using the NHANES_FPED data - 
MEDI_NHANES_FPED(), Calculating MEDI (serving size-based from the PREDIMED trial) with 1 step using the NHANES_FPED data - 
DII_NHANES_FPED(), Calculating DII with 1 step using the NHANES_FPED data 
 - 
 - For NHANES data between 1999-2004
- 
DI_GM_NHANES_MPED(), Calculating DI_GM with 1 step using the NHANES_MPED data - 
HEI2020_NHANES_MPED(), Calculating HEI2020 with 1 step using the NHANES_MPED data - 
HEI2015_NHANES_MPED(), Calculating HEI2015 with 1 step using the NHANES_MPED data - 
AHEI_NHANES_MPED(), Calculating AHEI with 1 step using the NHANES_MPED data - 
DASH_NHANES_MPED(), Calculating DASH with 1 step using the NHANES_MPED data - 
DASHI_NHANES_MPED(), Calculating DASHI with 1 step using the NHANES_MPED data - 
MED_NHANES_MPED(), Calculating aMED with 1 step using the NHANES_MPED data - 
MEDI_NHANES_MPED(), Calculating MEDI with 1 step using the NHANES_MPED data - 
DII_NHANES_MPED(), Calculating DII with 1 step using the NHANES_MPED data 
 - 
 
 - For NHANES data starting at the 2005-2006 cycle
 - ASA24
- 
HEI2020_ASA24(), Calculating HEI2020 for non-toddlers (age > 2 years) with 1 step using the ASA24 data - 
HEI2020_TODDLERS_ASA24(), Calculating HEI2020 for non-toddlers (age 1-2 years) with 1 step using the ASA24 data - 
HEI2015_ASA24(), Calculating HEI2015 with 1 step using the ASA24 data - 
AHEI_F_ASA24(), Calculate the AHEI (female only) within 1 step using the ASA24 data - 
AHEI_M_ASA24(), Calculate the AHEI (male only) within 1 step using the ASA24 data - 
DASH_ASA24(), Calculating DASH with 1 step using the ASA24 data - 
MED_ASA24(), Calculating aMED with 1 step using the ASA24 data - 
DII_ASA24(), Calculating DII with 1 step using the ASA24 data 
 - 
 - DHQ3
- 
HEI2015_DHQ3(), Calculating HEI2015 with 1 step using the DHQ3 data - 
AHEI_DHQ3(), Calculate the AHEI (female or male) within 1 step using the DHQ3 data - 
DASH_DHQ3(), Calculating DASH with 1 step using the DHQ3 data. The data is Detailed analysis file, ending with detail.csv - 
MED_DHQ3(), Calculating aMED with 1 step using the DHQ3 data 
 - 
 - BLOCK
- 
HEI2015_BLOCK(), Calculating HEI2015 with 1 step using the BLOCK data - 
MED_BLOCK(), Calculating aMED with 1 step using the BLOCK data - 
DII_BLOCK(), Calculating DII with 1 step using the BLOCK data - 
DASH_BLOCK(), Calculating DASH with 1 step using the BLOCK data - 
AHEI_BLOCK(), Calculating AHEI with 1 step using the BLOCK data - 
AHEIP_BLOCK(), Calculating AHEIP with 1 step using the BLOCK data 
 - 
 
Note: all NHANES functions allow users to enter the first day data, or the second day data, or first day + second day data and return the results accordingly. See examples later.
dietaryindex has compiled NHANES data from 2005 - 2020 for your convenience. This includes NHANES 2005-2006, 2007-2008, 2009-2010, 2011-2012, 2013-2014, 2015-2016, 2017-2018, 2017-2020. To retrieve the data:
Download the NHANES_combined folder from the Google Drive (https://drive.google.com/drive/u/2/folders/1umjhuS22aHEW_bU5AjYa8vrae91gsb0D)
Download the NHANES_combined folder from the GitHub dietaryindex_NHANES page (https://github.com/jamesjiadazhan/dietaryindex_NHANES/tree/main/data/NHANES_combined)
Then, you may use the following codes to load the data:
# set up working dictionary
setwd("/Users/james/Library/Mobile Documents/com~apple~CloudDocs/Desktop/Emory University - Ph.D./dietaryindex_package/NHANES_combined/dietaryindex_NHANES/data/NHANES_combined")
## NHANES 2005-2006, for example
load("NHANES_20052006.rda")
Examples for data format:
NHANES data format
# install.packages("devtools") #If you don't have "devtools" installed already
# devtools::install_github("jamesjiadazhan/dietaryindex") # Install the package from GitHub
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
library(dietaryindex)
## load dplyr package for data processing
library(dplyr)
## load the survey package for NHANES data
library(survey)## Warning: package 'survival' was built under R version 4.3.3
## Warning: package 'gtsummary' was built under R version 4.3.3
data("NHANES_20172018")Food pattern data for the 2017-2018 first day data
| SEQN | RIAGENDR | RIDAGEYR | RIDRETH3 | SDMVPSU | SDMVSTRA | INDFMIN2 | INDFMPIR | WTDRD1 | WTDR2D | DR1DRSTZ | DRABF | DRDINT | DR1TNUMF | DR1T_F_TOTAL | DR1T_F_CITMLB | DR1T_F_OTHER | DR1T_F_JUICE | DR1T_V_TOTAL | DR1T_V_DRKGR | DR1T_V_REDOR_TOTAL | DR1T_V_REDOR_TOMATO | DR1T_V_REDOR_OTHER | DR1T_V_STARCHY_TOTAL | DR1T_V_STARCHY_POTATO | DR1T_V_STARCHY_OTHER | DR1T_V_OTHER | DR1T_V_LEGUMES | DR1T_G_TOTAL | DR1T_G_WHOLE | DR1T_G_REFINED | DR1T_PF_TOTAL | DR1T_PF_MPS_TOTAL | DR1T_PF_MEAT | DR1T_PF_CUREDMEAT | DR1T_PF_ORGAN | DR1T_PF_POULT | DR1T_PF_SEAFD_HI | DR1T_PF_SEAFD_LOW | DR1T_PF_EGGS | DR1T_PF_SOY | DR1T_PF_NUTSDS | DR1T_PF_LEGUMES | DR1T_D_TOTAL | DR1T_D_MILK | DR1T_D_YOGURT | DR1T_D_CHEESE | DR1T_OILS | DR1T_SOLID_FATS | DR1T_ADD_SUGARS | DR1T_A_DRINKS | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 93703 | 2 | 2 | 6 | 2 | 145 | 15 | 5.00 | 0.000 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 
| 93704 | 1 | 2 | 3 | 1 | 143 | 15 | 5.00 | 81714.005 | 82442.869 | 1 | 2 | 2 | 13 | 0.99 | 0 | 0.00 | 0.99 | 0.82 | 0.00 | 0.03 | 0.03 | 0.00 | 0.73 | 0.73 | 0.00 | 0.06 | 0.00 | 3.03 | 0.00 | 3.03 | 3.52 | 3.30 | 0.00 | 0.00 | 0 | 2.12 | 1.18 | 0 | 0.22 | 0.00 | 0.00 | 0.00 | 1.73 | 1.06 | 0 | 0.67 | 23.16 | 9.53 | 9.12 | 0 | 
| 93705 | 2 | 66 | 4 | 2 | 145 | 3 | 0.82 | 7185.561 | 5640.391 | 1 | 2 | 2 | 17 | 0.00 | 0 | 0.00 | 0.00 | 1.50 | 0.31 | 0.59 | 0.16 | 0.42 | 0.14 | 0.11 | 0.03 | 0.46 | 0.15 | 2.10 | 0.00 | 2.10 | 0.80 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.01 | 0.79 | 0.00 | 0.58 | 0.22 | 0.03 | 0 | 0.19 | 21.68 | 31.14 | 19.42 | 0 | 
| 93706 | 1 | 18 | 6 | 2 | 134 | NA | NA | 6463.883 | 0.000 | 1 | 2 | 1 | 8 | 0.00 | 0 | 0.00 | 0.00 | 0.72 | 0.00 | 0.50 | 0.30 | 0.20 | 0.00 | 0.00 | 0.00 | 0.23 | 0.00 | 4.51 | 0.00 | 4.51 | 8.79 | 8.79 | 0.00 | 0.00 | 0 | 8.79 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 2.03 | 0.00 | 0 | 2.03 | 58.16 | 39.73 | 1.64 | 0 | 
| 93707 | 1 | 13 | 7 | 1 | 138 | 10 | 1.88 | 15333.777 | 22707.067 | 1 | 2 | 2 | 16 | 0.00 | 0 | 0.00 | 0.00 | 0.94 | 0.00 | 0.01 | 0.01 | 0.00 | 0.93 | 0.93 | 0.00 | 0.00 | 0.00 | 5.26 | 4.12 | 1.14 | 5.61 | 3.62 | 0.00 | 1.56 | 0 | 2.06 | 0.00 | 0 | 1.99 | 0.00 | 0.00 | 0.00 | 0.26 | 0.26 | 0 | 0.00 | 22.79 | 48.34 | 18.65 | 0 | 
| 93708 | 2 | 66 | 6 | 2 | 138 | 6 | 1.63 | 10825.545 | 22481.854 | 1 | 2 | 2 | 14 | 0.49 | 0 | 0.49 | 0.00 | 2.33 | 0.00 | 0.04 | 0.00 | 0.04 | 0.03 | 0.00 | 0.03 | 2.26 | 0.00 | 3.53 | 0.34 | 3.19 | 4.73 | 2.16 | 2.16 | 0.00 | 0 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 2.57 | 0.00 | 0.06 | 0.06 | 0 | 0.00 | 19.13 | 31.15 | 6.00 | 0 | 
Nutrient data for the 2017-2018 first day data
| SEQN | WTDRD1 | WTDR2D | DR1DRSTZ | DR1EXMER | DRABF | DRDINT | DR1DBIH | DR1DAY | DR1LANG | DR1MRESP | DR1HELP | DBQ095Z | DBD100 | DRQSPREP | DR1STY | DR1SKY | DRQSDIET | DRQSDT1 | DRQSDT2 | DRQSDT3 | DRQSDT4 | DRQSDT5 | DRQSDT6 | DRQSDT7 | DRQSDT8 | DRQSDT9 | DRQSDT10 | DRQSDT11 | DRQSDT12 | DRQSDT91 | DR1TNUMF | DR1TKCAL | DR1TPROT | DR1TCARB | DR1TSUGR | DR1TFIBE | DR1TTFAT | DR1TSFAT | DR1TMFAT | DR1TPFAT | DR1TCHOL | DR1TATOC | DR1TATOA | DR1TRET | DR1TVARA | DR1TACAR | DR1TBCAR | DR1TCRYP | DR1TLYCO | DR1TLZ | DR1TVB1 | DR1TVB2 | DR1TNIAC | DR1TVB6 | DR1TFOLA | DR1TFA | DR1TFF | DR1TFDFE | DR1TCHL | DR1TVB12 | DR1TB12A | DR1TVC | DR1TVD | DR1TVK | DR1TCALC | DR1TPHOS | DR1TMAGN | DR1TIRON | DR1TZINC | DR1TCOPP | DR1TSODI | DR1TPOTA | DR1TSELE | DR1TCAFF | DR1TTHEO | DR1TALCO | DR1TMOIS | DR1TS040 | DR1TS060 | DR1TS080 | DR1TS100 | DR1TS120 | DR1TS140 | DR1TS160 | DR1TS180 | DR1TM161 | DR1TM181 | DR1TM201 | DR1TM221 | DR1TP182 | DR1TP183 | DR1TP184 | DR1TP204 | DR1TP205 | DR1TP225 | DR1TP226 | DR1_300 | DR1_320Z | DR1_330Z | DR1BWATZ | DR1TWSZ | DRD340 | DRD350A | DRD350AQ | DRD350B | DRD350BQ | DRD350C | DRD350CQ | DRD350D | DRD350DQ | DRD350E | DRD350EQ | DRD350F | DRD350FQ | DRD350G | DRD350GQ | DRD350H | DRD350HQ | DRD350I | DRD350IQ | DRD350J | DRD350JQ | DRD350K | DRD360 | DRD370A | DRD370AQ | DRD370B | DRD370BQ | DRD370C | DRD370CQ | DRD370D | DRD370DQ | DRD370E | DRD370EQ | DRD370F | DRD370FQ | DRD370G | DRD370GQ | DRD370H | DRD370HQ | DRD370I | DRD370IQ | DRD370J | DRD370JQ | DRD370K | DRD370KQ | DRD370L | DRD370LQ | DRD370M | DRD370MQ | DRD370N | DRD370NQ | DRD370O | DRD370OQ | DRD370P | DRD370PQ | DRD370Q | DRD370QQ | DRD370R | DRD370RQ | DRD370S | DRD370SQ | DRD370T | DRD370TQ | DRD370U | DRD370UQ | DRD370V | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 93703 | 0.000 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 
| 93704 | 81714.005 | 82442.869 | 1 | 49 | 2 | 2 | 7 | 2 | 1 | 2 | 12 | 4 | NA | 2 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 13 | 1230 | 51.58 | 160.46 | 76.97 | 5.9 | 43.24 | 11.372 | 14.333 | 12.506 | 144 | 5.80 | 0 | 254 | 262 | 1 | 94 | 1 | 684 | 321 | 0.679 | 0.959 | 15.617 | 1.369 | 100 | 33 | 66 | 123 | 198.1 | 3.83 | 0 | 60.1 | 8.1 | 38.2 | 700 | 1170 | 151 | 3.55 | 4.18 | 0.497 | 2198 | 1970 | 52.9 | 8 | 54 | 0 | 875.00 | 0.219 | 0.166 | 0.119 | 0.273 | 0.291 | 1.050 | 6.577 | 2.098 | 0.337 | 13.682 | 0.392 | 0.029 | 11.087 | 1.054 | 0.031 | 0.079 | 0.080 | 0.027 | 0.150 | 2 | 240 | 240 | 0 | 91 | 1 | 2 | NA | 1 | 2 | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 2 | 2 | NA | 2 | NA | 2 | 1 | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | 
| 93705 | 7185.561 | 5640.391 | 1 | 73 | 2 | 2 | 5 | 1 | 1 | 1 | 11 | 4 | NA | 3 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 17 | 1202 | 20.01 | 157.45 | 91.55 | 8.4 | 56.98 | 16.435 | 16.432 | 19.786 | 14 | 5.66 | 0 | 32 | 436 | 1551 | 4096 | 2 | 1573 | 1645 | 0.589 | 1.237 | 7.576 | 0.458 | 179 | 32 | 146 | 202 | 95.0 | 0.33 | 0 | 21.4 | 0.2 | 155.5 | 314 | 466 | 162 | 8.80 | 2.93 | 0.689 | 3574 | 1640 | 22.1 | 361 | 120 | 0 | 1773.88 | 0.156 | 0.077 | 0.058 | 0.122 | 0.145 | 0.447 | 8.951 | 5.980 | 0.118 | 16.047 | 0.101 | 0.014 | 17.805 | 1.943 | 0.000 | 0.014 | 0.001 | 0.001 | 0.001 | 2 | 315 | 315 | 0 | 1 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 
| 93706 | 6463.883 | 0.000 | 1 | 86 | 2 | 1 | NA | 6 | 1 | 1 | 12 | 1 | 1 | 3 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 8 | 1987 | 94.19 | 89.82 | 14.73 | 7.1 | 137.39 | 35.169 | 45.805 | 49.873 | 462 | 10.02 | 0 | 198 | 431 | 872 | 2363 | 2 | 4605 | 313 | 1.152 | 1.033 | 26.831 | 1.821 | 267 | 125 | 139 | 354 | 367.9 | 2.30 | 0 | 9.7 | 0.7 | 138.4 | 869 | 1025 | 187 | 8.52 | 8.05 | 0.614 | 3657 | 1247 | 118.5 | 0 | 0 | 0 | 3405.40 | 0.263 | 0.203 | 0.140 | 0.377 | 0.459 | 1.816 | 23.150 | 7.747 | 3.387 | 41.577 | 0.524 | 0.011 | 44.097 | 5.074 | 0.016 | 0.308 | 0.021 | 0.044 | 0.021 | 3 | 3042 | 0 | 3042 | 1 | 1 | 1 | 2 | 2 | NA | 2 | NA | 2 | NA | 1 | 2 | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 3 | 2 | NA | 1 | 3 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | 
| 93707 | 15333.777 | 22707.067 | 1 | 81 | 2 | 2 | 14 | 2 | 1 | 1 | 12 | 1 | 9 | 2 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 16 | 1775 | 59.48 | 188.15 | 84.22 | 10.9 | 89.18 | 33.252 | 33.712 | 12.424 | 585 | 8.92 | 0 | 443 | 449 | 0 | 70 | 9 | 516 | 579 | 0.755 | 1.296 | 13.920 | 0.951 | 124 | 15 | 110 | 135 | 369.4 | 2.08 | 0 | 12.9 | 2.7 | 23.5 | 535 | 945 | 215 | 8.42 | 8.30 | 0.955 | 2450 | 1769 | 91.9 | 21 | 133 | 0 | 2222.41 | 1.015 | 0.616 | 0.414 | 0.849 | 1.138 | 3.383 | 17.280 | 7.815 | 1.807 | 32.089 | 0.284 | 0.046 | 11.221 | 0.873 | 0.002 | 0.237 | 0.008 | 0.015 | 0.058 | 2 | 1785 | 1545 | 240 | 99 | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 
| 93708 | 10825.545 | 22481.854 | 1 | 73 | 2 | 2 | 41 | 7 | 6 | 1 | 9 | 4 | NA | 4 | 2 | NA | 2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 14 | 1251 | 50.96 | 123.71 | 49.84 | 16.6 | 65.49 | 17.446 | 29.000 | 14.823 | 71 | 6.20 | 0 | 35 | 236 | 323 | 2245 | 26 | 0 | 2148 | 1.143 | 0.840 | 15.368 | 1.096 | 260 | 74 | 185 | 311 | 175.7 | 1.09 | 0 | 146.4 | 0.8 | 137.0 | 412 | 635 | 248 | 11.49 | 6.45 | 1.049 | 2135 | 1631 | 54.3 | 33 | 69 | 0 | 2821.95 | 0.070 | 0.044 | 0.027 | 0.091 | 0.097 | 0.499 | 9.440 | 6.126 | 0.446 | 28.177 | 0.310 | 0.003 | 13.927 | 0.804 | 0.000 | 0.038 | 0.001 | 0.004 | 0.000 | 2 | 2160 | 720 | 1440 | 1 | 1 | 2 | NA | 2 | NA | 2 | NA | 1 | 2 | 2 | NA | 2 | NA | 2 | NA | 1 | 2 | 2 | NA | 2 | NA | 2 | 1 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 1 | 6 | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | NA | 2 | 
Demographic data for the 2017-2018 first and second day data
| SEQN | SDDSRVYR | RIDSTATR | RIAGENDR | RIDAGEYR | RIDAGEMN | RIDRETH1 | RIDRETH3 | RIDEXMON | RIDEXAGM | DMQMILIZ | DMQADFC | DMDBORN4 | DMDCITZN | DMDYRSUS | DMDEDUC3 | DMDEDUC2 | DMDMARTL | RIDEXPRG | SIALANG | SIAPROXY | SIAINTRP | FIALANG | FIAPROXY | FIAINTRP | MIALANG | MIAPROXY | MIAINTRP | AIALANGA | DMDHHSIZ | DMDFMSIZ | DMDHHSZA | DMDHHSZB | DMDHHSZE | DMDHRGND | DMDHRAGZ | DMDHREDZ | DMDHRMAZ | DMDHSEDZ | WTINT2YR | WTMEC2YR | SDMVPSU | SDMVSTRA | INDHHIN2 | INDFMIN2 | INDFMPIR | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 93703 | 10 | 2 | 2 | 2 | NA | 5 | 6 | 2 | 27 | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 2 | NA | NA | NA | NA | 5 | 5 | 3 | 0 | 0 | 1 | 2 | 3 | 1 | 3 | 9246.492 | 8539.731 | 2 | 145 | 15 | 15 | 5.00 | 
| 93704 | 10 | 2 | 1 | 2 | NA | 3 | 3 | 1 | 33 | NA | NA | 1 | 1 | NA | NA | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 2 | NA | NA | NA | NA | 4 | 4 | 2 | 0 | 0 | 1 | 2 | 3 | 1 | 2 | 37338.768 | 42566.615 | 1 | 143 | 15 | 15 | 5.00 | 
| 93705 | 10 | 2 | 2 | 66 | NA | 4 | 4 | 2 | NA | 2 | NA | 1 | 1 | NA | NA | 2 | 3 | NA | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 4 | 1 | 2 | NA | 8614.571 | 8338.420 | 2 | 145 | 3 | 3 | 0.82 | 
| 93706 | 10 | 2 | 1 | 18 | NA | 5 | 6 | 2 | 222 | 2 | NA | 1 | 1 | NA | 15 | NA | NA | NA | 1 | 2 | 2 | NA | NA | NA | 1 | 2 | 2 | 1 | 5 | 5 | 0 | 0 | 1 | 1 | 4 | 3 | 1 | 2 | 8548.633 | 8723.440 | 2 | 134 | NA | NA | NA | 
| 93707 | 10 | 2 | 1 | 13 | NA | 5 | 7 | 2 | 158 | NA | NA | 1 | 1 | NA | 6 | NA | NA | NA | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 7 | 7 | 0 | 3 | 0 | 1 | 3 | 2 | 1 | 3 | 6769.345 | 7064.610 | 1 | 138 | 10 | 10 | 1.88 | 
| 93708 | 10 | 2 | 2 | 66 | NA | 5 | 6 | 2 | NA | 2 | NA | 2 | 1 | 7 | NA | 1 | 1 | NA | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 0 | 0 | 2 | 1 | 4 | 1 | 1 | 1 | 13329.451 | 14372.489 | 2 | 138 | 6 | 6 | 1.63 | 
Food pattern data for the 2017-2018 second day data
| SEQN | RIAGENDR | RIDAGEYR | RIDRETH3 | SDMVPSU | SDMVSTRA | INDFMIN2 | INDFMPIR | WTDRD1 | WTDR2D | DR2DRSTZ | DRABF | DRDINT | DR2TNUMF | DR2T_F_TOTAL | DR2T_F_CITMLB | DR2T_F_OTHER | DR2T_F_JUICE | DR2T_V_TOTAL | DR2T_V_DRKGR | DR2T_V_REDOR_TOTAL | DR2T_V_REDOR_TOMATO | DR2T_V_REDOR_OTHER | DR2T_V_STARCHY_TOTAL | DR2T_V_STARCHY_POTATO | DR2T_V_STARCHY_OTHER | DR2T_V_OTHER | DR2T_V_LEGUMES | DR2T_G_TOTAL | DR2T_G_WHOLE | DR2T_G_REFINED | DR2T_PF_TOTAL | DR2T_PF_MPS_TOTAL | DR2T_PF_MEAT | DR2T_PF_CUREDMEAT | DR2T_PF_ORGAN | DR2T_PF_POULT | DR2T_PF_SEAFD_HI | DR2T_PF_SEAFD_LOW | DR2T_PF_EGGS | DR2T_PF_SOY | DR2T_PF_NUTSDS | DR2T_PF_LEGUMES | DR2T_D_TOTAL | DR2T_D_MILK | DR2T_D_YOGURT | DR2T_D_CHEESE | DR2T_OILS | DR2T_SOLID_FATS | DR2T_ADD_SUGARS | DR2T_A_DRINKS | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 93703 | 2 | 2 | 6 | 2 | 145 | 15 | 5.00 | 0.000 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 
| 93704 | 1 | 2 | 3 | 1 | 143 | 15 | 5.00 | 81714.005 | 82442.869 | 1 | 2 | 2 | 13 | 1.94 | 0.61 | 0.46 | 0.87 | 0.02 | 0 | 0.02 | 0.02 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 5.00 | 0.72 | 4.28 | 0.46 | 0.00 | 0.00 | 0.0 | 0 | 0.00 | 0.00 | 0.00 | 0.46 | 0.00 | 0.0 | 0.00 | 1.74 | 1.54 | 0 | 0.19 | 19.42 | 10.28 | 17.25 | 0 | 
| 93705 | 2 | 66 | 4 | 2 | 145 | 3 | 0.82 | 7185.561 | 5640.391 | 1 | 2 | 2 | 14 | 0.03 | 0.00 | 0.00 | 0.03 | 0.29 | 0 | 0.28 | 0.25 | 0.03 | 0.00 | 0 | 0.00 | 0.01 | 0.23 | 5.39 | 0.00 | 5.39 | 2.75 | 0.30 | 0.00 | 0.3 | 0 | 0.00 | 0.00 | 0.00 | 2.05 | 0.00 | 0.4 | 0.91 | 0.52 | 0.00 | 0 | 0.51 | 25.40 | 20.01 | 8.67 | 0 | 
| 93706 | 1 | 18 | 6 | 2 | 134 | NA | NA | 6463.883 | 0.000 | 5 | 2 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 
| 93707 | 1 | 13 | 7 | 1 | 138 | 10 | 1.88 | 15333.777 | 22707.067 | 1 | 2 | 2 | 14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.70 | 0 | 0.06 | 0.06 | 0.00 | 0.64 | 0 | 0.64 | 0.00 | 0.00 | 2.94 | 0.90 | 2.04 | 10.29 | 7.98 | 6.69 | 0.0 | 0 | 1.29 | 0.00 | 0.00 | 2.25 | 0.07 | 0.0 | 0.00 | 0.04 | 0.04 | 0 | 0.00 | 30.07 | 38.10 | 18.15 | 0 | 
| 93708 | 2 | 66 | 6 | 2 | 138 | 6 | 1.63 | 10825.545 | 22481.854 | 1 | 2 | 2 | 15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.26 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.26 | 0.00 | 2.59 | 0.00 | 2.59 | 2.34 | 2.31 | 0.00 | 0.0 | 0 | 0.89 | 0.94 | 0.48 | 0.03 | 0.00 | 0.0 | 0.00 | 1.14 | 1.11 | 0 | 0.00 | 10.13 | 24.19 | 6.44 | 0 | 
Nutrient data for the 2017-2018 second day data
| SEQN | WTDRD1 | WTDR2D | DR2DRSTZ | DR2EXMER | DRABF | DRDINT | DR2DBIH | DR2DAY | DR2LANG | DR2MRESP | DR2HELP | DR2TNUMF | DR2STY | DR2SKY | DR2TKCAL | DR2TPROT | DR2TCARB | DR2TSUGR | DR2TFIBE | DR2TTFAT | DR2TSFAT | DR2TMFAT | DR2TPFAT | DR2TCHOL | DR2TATOC | DR2TATOA | DR2TRET | DR2TVARA | DR2TACAR | DR2TBCAR | DR2TCRYP | DR2TLYCO | DR2TLZ | DR2TVB1 | DR2TVB2 | DR2TNIAC | DR2TVB6 | DR2TFOLA | DR2TFA | DR2TFF | DR2TFDFE | DR2TCHL | DR2TVB12 | DR2TB12A | DR2TVC | DR2TVD | DR2TVK | DR2TCALC | DR2TPHOS | DR2TMAGN | DR2TIRON | DR2TZINC | DR2TCOPP | DR2TSODI | DR2TPOTA | DR2TSELE | DR2TCAFF | DR2TTHEO | DR2TALCO | DR2TMOIS | DR2TS040 | DR2TS060 | DR2TS080 | DR2TS100 | DR2TS120 | DR2TS140 | DR2TS160 | DR2TS180 | DR2TM161 | DR2TM181 | DR2TM201 | DR2TM221 | DR2TP182 | DR2TP183 | DR2TP184 | DR2TP204 | DR2TP205 | DR2TP225 | DR2TP226 | DR2_300 | DR2_320Z | DR2_330Z | DR2BWATZ | DR2TWSZ | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 93703 | 0.000 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 
| 93704 | 81714.005 | 82442.869 | 1 | 87 | 2 | 2 | 18 | 6 | 1 | 2 | 12 | 13 | 2 | NA | 1356 | 30.49 | 229.69 | 134.37 | 8.2 | 37.02 | 10.368 | 10.443 | 13.249 | 70 | 3.75 | 0 | 562 | 589 | 0 | 299 | 67 | 3835 | 174 | 1.407 | 1.562 | 10.871 | 1.189 | 360 | 311 | 50 | 577 | 223.0 | 4.74 | 2.08 | 38.3 | 5.4 | 58.2 | 761 | 879 | 147 | 10.06 | 8.13 | 0.473 | 1345 | 1413 | 46.9 | 6 | 54 | 0 | 795.87 | 0.251 | 0.161 | 0.099 | 0.221 | 0.239 | 0.796 | 5.929 | 2.366 | 0.168 | 10.084 | 0.155 | 0.010 | 11.601 | 1.581 | 0.003 | 0.041 | 0.000 | 0.002 | 0.010 | 2 | 0 | 0 | 0 | 91 | 
| 93705 | 7185.561 | 5640.391 | 1 | 91 | 2 | 2 | 15 | 4 | 1 | 1 | 12 | 14 | 2 | NA | 1235 | 38.52 | 147.49 | 43.04 | 13.1 | 55.19 | 14.079 | 19.882 | 17.072 | 402 | 6.15 | 0 | 217 | 267 | 156 | 510 | 15 | 7884 | 582 | 1.001 | 1.274 | 8.549 | 0.418 | 231 | 93 | 139 | 295 | 323.8 | 1.25 | 0.00 | 3.3 | 3.5 | 31.2 | 693 | 738 | 156 | 10.52 | 4.48 | 0.893 | 2447 | 1158 | 67.9 | 146 | 19 | 0 | 1973.77 | 0.104 | 0.082 | 0.063 | 0.170 | 0.217 | 0.613 | 8.728 | 3.519 | 0.441 | 19.072 | 0.176 | 0.003 | 15.339 | 1.365 | 0.001 | 0.201 | 0.002 | 0.011 | 0.059 | 2 | 960 | 0 | 960 | 1 | 
| 93706 | 6463.883 | 0.000 | 5 | NA | 2 | 1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 
| 93707 | 15333.777 | 22707.067 | 1 | 78 | 2 | 2 | 22 | 3 | 1 | 1 | 4 | 14 | 1 | 1 | 1794 | 92.03 | 153.12 | 85.81 | 7.9 | 93.98 | 31.098 | 35.405 | 17.827 | 656 | 10.70 | 0 | 235 | 248 | 16 | 88 | 123 | 2136 | 1160 | 0.428 | 1.240 | 23.431 | 1.827 | 125 | 19 | 106 | 136 | 521.5 | 4.94 | 0.00 | 8.1 | 2.8 | 66.5 | 227 | 1136 | 180 | 13.69 | 14.23 | 0.834 | 2581 | 1805 | 122.2 | 10 | 322 | 0 | 1398.45 | 0.251 | 0.156 | 0.123 | 0.283 | 0.524 | 1.657 | 18.588 | 8.756 | 1.574 | 33.294 | 0.255 | 0.009 | 15.732 | 1.568 | 0.001 | 0.327 | 0.004 | 0.025 | 0.061 | 3 | 1020 | 780 | 240 | 99 | 
| 93708 | 10825.545 | 22481.854 | 1 | 43 | 2 | 2 | 56 | 1 | 1 | 1 | 12 | 15 | 2 | NA | 842 | 32.85 | 83.92 | 42.37 | 2.8 | 41.52 | 14.962 | 13.227 | 8.662 | 126 | 2.98 | 0 | 277 | 323 | 2 | 536 | 3 | 0 | 236 | 0.483 | 0.640 | 7.768 | 0.525 | 103 | 57 | 46 | 143 | 139.6 | 3.36 | 0.00 | 3.4 | 10.9 | 49.1 | 535 | 599 | 99 | 2.77 | 2.98 | 0.332 | 1241 | 831 | 39.7 | 0 | 12 | 0 | 1934.55 | 0.226 | 0.169 | 0.115 | 0.264 | 0.361 | 1.265 | 9.269 | 2.986 | 0.630 | 11.879 | 0.779 | 0.025 | 7.398 | 0.984 | 0.025 | 0.043 | 0.082 | 0.035 | 0.132 | 2 | 1524 | 510 | 1014 | 1 | 
ASA24 data format:
ASA24 dietary data for each individual
| RecallRecId | UserName | UserID | RecallNo | RecallAttempt | RecallStatus | IntakeStartDateTime | IntakeEndDateTime | ReportingDate | Lang | NumFoods | NumCodes | AmtUsual | KCAL | PROT | TFAT | CARB | MOIS | ALC | CAFF | THEO | SUGR | FIBE | CALC | IRON | MAGN | PHOS | POTA | SODI | ZINC | COPP | SELE | VC | VB1 | VB2 | NIAC | VB6 | FOLA | FA | FF | FDFE | VB12 | VARA | RET | BCAR | ACAR | CRYP | LYCO | LZ | ATOC | VK | CHOLE | SFAT | S040 | S060 | S080 | S100 | S120 | S140 | S160 | S180 | MFAT | M161 | M181 | M201 | M221 | PFAT | P182 | P183 | P184 | P204 | P205 | P225 | P226 | VITD | CHOLN | VITE_ADD | B12_ADD | F_TOTAL | F_CITMLB | F_OTHER | F_JUICE | V_TOTAL | V_DRKGR | V_REDOR_TOTAL | V_REDOR_TOMATO | V_REDOR_OTHER | V_STARCHY_TOTAL | V_STARCHY_POTATO | V_STARCHY_OTHER | V_OTHER | V_LEGUMES | G_TOTAL | G_WHOLE | G_REFINED | PF_TOTAL | PF_MPS_TOTAL | PF_MEAT | PF_CUREDMEAT | PF_ORGAN | PF_POULT | PF_SEAFD_HI | PF_SEAFD_LOW | PF_EGGS | PF_SOY | PF_NUTSDS | PF_LEGUMES | D_TOTAL | D_MILK | D_YOGURT | D_CHEESE | OILS | SOLID_FATS | ADD_SUGARS | A_DRINKS | DataComp | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 960a78fa-fdf8-417d-a5d2-e29d7984ac8d | 1 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 23 | 23 | 1 | 2019.1261 | 64.00808 | 97.71591 | 235.86038 | 2386.6157 | 0 | 36.88 | 41.2 | 74.68865 | 23.631891 | 1104.3000 | 15.024851 | 483.81516 | 1150.5633 | 2965.253 | 3415.849 | 8.317065 | 1.6922004 | 103.06994 | 53.30264 | 1.6393786 | 1.5903095 | 22.102181 | 1.5142930 | 393.9672 | 149.24784 | 244.7193 | 496.3751 | 2.959247 | 960.4294 | 320.5494 | 7330.914 | 765.8908 | 22.90329 | 813.3750 | 16872.0702 | 20.156954 | 567.0490 | 217.0211 | 20.891319 | 0.2926330 | 0.2030142 | 0.1435912 | 0.2999671 | 0.3031705 | 1.0094686 | 12.634695 | 4.442925 | 46.080027 | 0.6288449 | 44.737310 | 0.5006182 | 0.00030 | 25.233201 | 23.46477 | 1.5142505 | 0.00030 | 0.1190309 | 0.000528 | 0.0043849 | 0.0265132 | 5.545659 | 320.0657 | 6.8564 | 1.5372 | 0.40730 | 0.0000 | 0.39530 | 0.01200 | 2.006828 | 0.971500 | 0.3217283 | 0.1807500 | 0.1409784 | 0.36150 | 0.180750 | 0.180750 | 0.3521000 | 0.0930 | 6.86142 | 1.784250 | 5.077170 | 5.913528 | 0.00000 | 0 | 0.00000 | 0 | 0.00000 | 0 | 0 | 0.9115442 | 0.2126250 | 4.789359 | 0.3690 | 0.6840 | 0.6840 | 0 | 0 | 61.89215 | 12.830923 | 10.928636 | 0 | 1 | 
| 960a78fa-fdf8-417d-a5d2-e29d7984ac8c | 1 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 2 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 23 | 23 | 1 | 1009.5630 | 32.00404 | 48.85796 | 117.93019 | 1193.3079 | 0 | 18.44 | 20.6 | 37.34432 | 11.815945 | 552.1500 | 7.512426 | 241.90758 | 575.2816 | 1482.626 | 1707.924 | 4.158532 | 0.8461002 | 51.53497 | 26.65132 | 0.8196893 | 0.7951547 | 11.051090 | 0.7571465 | 196.9836 | 74.62392 | 122.3597 | 248.1876 | 1.479623 | 480.2147 | 160.2747 | 3665.457 | 382.9454 | 11.45165 | 406.6875 | 8436.0351 | 10.078477 | 283.5245 | 108.5106 | 10.445659 | 0.1463165 | 0.1015071 | 0.0717956 | 0.1499836 | 0.1515853 | 0.5047343 | 6.317347 | 2.221462 | 23.040013 | 0.3144225 | 22.368655 | 0.2503091 | 0.00015 | 12.616600 | 11.73238 | 0.7571252 | 0.00015 | 0.0595154 | 0.000264 | 0.0021924 | 0.0132566 | 2.772829 | 160.0329 | 3.4282 | 0.7686 | 0.20365 | 0.0000 | 0.19765 | 0.00600 | 1.003414 | 0.485750 | 0.1608642 | 0.0903750 | 0.0704892 | 0.18075 | 0.090375 | 0.090375 | 0.1760500 | 0.0465 | 3.43071 | 0.892125 | 2.538585 | 2.956764 | 0.00000 | 0 | 0.00000 | 0 | 0.00000 | 0 | 0 | 0.4557721 | 0.1063125 | 2.394679 | 0.1845 | 0.3420 | 0.3420 | 0 | 0 | 30.94608 | 6.415462 | 5.464318 | 0 | 1 | 
| cee8c74d-51a2-4629-b92f-6bbdb5793fd6 | 2 | dbb278b0-b589-442a-88fd-9a68fd986a91 | 1 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 10 | 10 | 2 | 1246.7375 | 48.24150 | 55.36362 | 145.31270 | 2452.3924 | 0 | 96.00 | 0.0 | 71.76457 | 10.042250 | 831.9350 | 5.861650 | 186.70250 | 758.3275 | 2361.782 | 3808.492 | 4.948700 | 0.7704950 | 41.95375 | 155.40625 | 0.5238725 | 1.0762800 | 10.140018 | 1.4799800 | 306.3900 | 41.98000 | 264.4100 | 332.7700 | 0.421650 | 592.5575 | 275.4900 | 3394.180 | 750.6900 | 103.62000 | 7350.6575 | 1641.6150 | 7.406650 | 214.1842 | 135.8750 | 16.216413 | 0.4035600 | 0.1527600 | 0.1392600 | 0.2849400 | 0.2373300 | 1.5209750 | 8.760355 | 3.949800 | 17.413210 | 0.5344450 | 16.516858 | 0.0928200 | 0.00090 | 15.803205 | 14.12976 | 1.5046100 | 0.00090 | 0.0810300 | 0.000000 | 0.0065100 | 0.0089550 | 2.802000 | 256.0770 | 0.0000 | 0.0000 | 1.48800 | 0.0000 | 0.00000 | 1.48800 | 2.140250 | 0.618450 | 0.3484250 | 0.2520250 | 0.0964000 | 0.42190 | 0.096400 | 0.325500 | 0.7514750 | 0.1446 | 2.99510 | 0.079800 | 2.915300 | 2.903700 | 2.53890 | 0 | 0.00000 | 0 | 2.53890 | 0 | 0 | 0.3648000 | 0.0000000 | 0.000000 | 0.4820 | 0.0456 | 0.0456 | 0 | 0 | 19.24660 | 23.699800 | 5.198400 | 0 | 1 | 
| cee8c74d-51a2-4629-b92f-6bbdb5793fd7 | 2 | dbb278b0-b589-442a-88fd-9a68fd986a91 | 2 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 10 | 10 | 2 | 623.3687 | 24.12075 | 27.68181 | 72.65635 | 1226.1962 | 0 | 48.00 | 0.0 | 35.88229 | 5.021125 | 415.9675 | 2.930825 | 93.35125 | 379.1637 | 1180.891 | 1904.246 | 2.474350 | 0.3852475 | 20.97687 | 77.70312 | 0.2619362 | 0.5381400 | 5.070009 | 0.7399900 | 153.1950 | 20.99000 | 132.2050 | 166.3850 | 0.210825 | 296.2788 | 137.7450 | 1697.090 | 375.3450 | 51.81000 | 3675.3288 | 820.8075 | 3.703325 | 107.0921 | 67.9375 | 8.108206 | 0.2017800 | 0.0763800 | 0.0696300 | 0.1424700 | 0.1186650 | 0.7604875 | 4.380178 | 1.974900 | 8.706605 | 0.2672225 | 8.258429 | 0.0464100 | 0.00045 | 7.901603 | 7.06488 | 0.7523050 | 0.00045 | 0.0405150 | 0.000000 | 0.0032550 | 0.0044775 | 1.401000 | 128.0385 | 0.0000 | 0.0000 | 0.74400 | 0.0000 | 0.00000 | 0.74400 | 1.070125 | 0.309225 | 0.1742125 | 0.1260125 | 0.0482000 | 0.21095 | 0.048200 | 0.162750 | 0.3757375 | 0.0723 | 1.49755 | 0.039900 | 1.457650 | 1.451850 | 1.26945 | 0 | 0.00000 | 0 | 1.26945 | 0 | 0 | 0.1824000 | 0.0000000 | 0.000000 | 0.2410 | 0.0228 | 0.0228 | 0 | 0 | 9.62330 | 11.849900 | 2.599200 | 0 | 1 | 
| 1f9daf51-8540-4fef-9f49-fe56c4b1ac54 | 3 | f0115426-e6f8-4c6f-aeaa-065c615c85bd | 1 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 14 | 14 | 2 | 2206.4860 | 65.89972 | 100.11426 | 267.77062 | 1770.4026 | 0 | 0.00 | 0.0 | 123.37104 | 16.349200 | 1136.0940 | 18.384940 | 221.62600 | 1205.8780 | 2440.166 | 4415.830 | 11.695100 | 0.7360300 | 68.76180 | 208.30220 | 1.8280460 | 2.2464920 | 29.188010 | 2.7669520 | 437.1660 | 160.00000 | 277.1660 | 553.6660 | 6.074620 | 821.8680 | 751.6020 | 637.836 | 125.8860 | 303.95200 | 100.6600 | 1051.0980 | 11.616760 | 117.3554 | 219.8120 | 26.972348 | 0.0040000 | 0.0024000 | 0.0108500 | 0.0122500 | 0.0100900 | 1.4957080 | 16.320104 | 7.901016 | 41.234728 | 1.8123080 | 38.692992 | 0.3343900 | 0.00184 | 22.686492 | 20.30833 | 1.9270220 | 0.00380 | 0.1777100 | 0.012290 | 0.0056700 | 0.0158500 | 4.339800 | 279.7190 | 3.4282 | 3.2986 | 1.88170 | 0.9936 | 0.00000 | 0.88810 | 2.800000 | 0.000000 | 0.3960000 | 0.0000000 | 0.3960000 | 0.75400 | 0.490000 | 0.264000 | 1.6500000 | 0.0000 | 5.48100 | 0.272000 | 5.209000 | 6.792320 | 6.36552 | 0 | 2.75562 | 0 | 3.60990 | 0 | 0 | 0.2560000 | 0.0000000 | 0.170800 | 0.0000 | 0.0560 | 0.0560 | 0 | 0 | 29.05440 | 49.324960 | 17.793340 | 0 | 1 | 
| 1f9daf51-8540-4fef-9f49-fe56c4b1ac55 | 3 | f0115426-e6f8-4c6f-aeaa-065c615c85bd | 2 | 0 | 2 | 1/18/22 0:00 | 1/18/22 23:59 | 1/19/22 | 1 | 14 | 14 | 2 | 1103.2430 | 32.94986 | 50.05713 | 133.88531 | 885.2013 | 0 | 0.00 | 0.0 | 61.68552 | 8.174600 | 568.0470 | 9.192470 | 110.81300 | 602.9390 | 1220.083 | 2207.915 | 5.847550 | 0.3680150 | 34.38090 | 104.15110 | 0.9140230 | 1.1232460 | 14.594005 | 1.3834760 | 218.5830 | 80.00000 | 138.5830 | 276.8330 | 3.037310 | 410.9340 | 375.8010 | 318.918 | 62.9430 | 151.97600 | 50.3300 | 525.5490 | 5.808380 | 58.6777 | 109.9060 | 13.486174 | 0.0020000 | 0.0012000 | 0.0054250 | 0.0061250 | 0.0050450 | 0.7478540 | 8.160052 | 3.950508 | 20.617364 | 0.9061540 | 19.346496 | 0.1671950 | 0.00092 | 11.343246 | 10.15416 | 0.9635110 | 0.00190 | 0.0888550 | 0.006145 | 0.0028350 | 0.0079250 | 2.169900 | 139.8595 | 1.7141 | 1.6493 | 0.94085 | 0.4968 | 0.00000 | 0.44405 | 1.400000 | 0.000000 | 0.1980000 | 0.0000000 | 0.1980000 | 0.37700 | 0.245000 | 0.132000 | 0.8250000 | 0.0000 | 2.74050 | 0.136000 | 2.604500 | 3.396160 | 3.18276 | 0 | 1.37781 | 0 | 1.80495 | 0 | 0 | 0.1280000 | 0.0000000 | 0.085400 | 0.0000 | 0.0280 | 0.0280 | 0 | 0 | 14.52720 | 24.662480 | 8.896670 | 0 | 1 | 
ASA24 detailed food data for all foods consumed by each individual
| RecallRecId | UserName | UserID | RecallNo | RecallAttempt | RecallStatus | IntakeStartDateTime | IntakeEndDateTime | ReportingDate | Lang | Occ_No | Occ_Time | Occ_Name | EatWith | WatchTVuseComputer | Location | FoodNum | FoodType | FoodSrce | CodeNum | FoodCode | ModCode | HowMany | SubCode | PortionCode | FoodAmt | KCAL | PROT | TFAT | CARB | MOIS | ALC | CAFF | THEO | SUGR | FIBE | CALC | IRON | MAGN | PHOS | POTA | SODI | ZINC | COPP | SELE | VC | VB1 | VB2 | NIAC | VB6 | FOLA | FA | FF | FDFE | VB12 | VARA | RET | BCAR | ACAR | CRYP | LYCO | LZ | ATOC | VK | CHOLE | SFAT | S040 | S060 | S080 | S100 | S120 | S140 | S160 | S180 | MFAT | M161 | M181 | M201 | M221 | PFAT | P182 | P183 | P184 | P204 | P205 | P225 | P226 | VITD | CHOLN | VITE_ADD | B12_ADD | F_TOTAL | F_CITMLB | F_OTHER | F_JUICE | V_TOTAL | V_DRKGR | V_REDOR_TOTAL | V_REDOR_TOMATO | V_REDOR_OTHER | V_STARCHY_TOTAL | V_STARCHY_POTATO | V_STARCHY_OTHER | V_OTHER | V_LEGUMES | G_TOTAL | G_WHOLE | G_REFINED | PF_TOTAL | PF_MPS_TOTAL | PF_MEAT | PF_CUREDMEAT | PF_ORGAN | PF_POULT | PF_SEAFD_HI | PF_SEAFD_LOW | PF_EGGS | PF_SOY | PF_NUTSDS | PF_LEGUMES | D_TOTAL | D_MILK | D_YOGURT | D_CHEESE | OILS | SOLID_FATS | ADD_SUGARS | A_DRINKS | FoodComp | Food_Description | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 1 | 1 | Supermarket or grocery store | 1 | 51180010 | 0 | 0.5 | 0 | 62015 | 34.5 | 91.08 | 3.6432 | 0.4554 | 18.0711 | 11.66445 | 0 | 0.0 | 0.0 | 2.90835 | 0.552 | 36.225 | 1.23165 | 10.005 | 34.155 | 36.915 | 145.59 | 0.28635 | 0.04416 | 7.4175 | 0.00 | 0.19596 | 0.11868 | 1.557675 | 0.02415 | 36.57 | 28.29 | 8.28 | 56.235 | 0.0000 | 0.00 | 0.00 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0345 | 0.069 | 0.0 | 0.1242 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.00138 | 0.078315 | 0.039675 | 0.13455 | 0.002415 | 0.06417 | 0.001725 | 0 | 0.18147 | 0.173535 | 0.00828 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 0.00 | 5.037 | 0.0000 | 0.0000 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 1.45935 | 0 | 1.45935 | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.0000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.0000 | 0.000 | 0.39675 | 0 | 1 | Bagel | 
| 960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 2 | 1 | Supermarket or grocery store | 2 | 31105030 | 0 | 1.0 | 0 | 61238 | 40.0 | 86.00 | 5.3080 | 6.8960 | 0.3040 | 26.72800 | 0 | 0.0 | 0.0 | 0.15600 | 0.000 | 23.600 | 0.74400 | 5.200 | 83.600 | 58.400 | 182.80 | 0.54400 | 0.03040 | 12.9600 | 0.00 | 0.01440 | 0.18360 | 0.030000 | 0.06840 | 14.80 | 0.00 | 14.80 | 14.800 | 0.3200 | 67.60 | 67.60 | 0.0 | 0 | 4 | 0 | 212.4 | 0.7800 | 3.520 | 157.2 | 1.7148 | 0.0016 | 0.0000 | 0.0016 | 0.0024 | 0.000 | 0.01400 | 1.223600 | 0.434800 | 2.75160 | 0.095200 | 2.62440 | 0.023200 | 0 | 1.99360 | 1.697200 | 0.16640 | 0 | 0.0796 | 0 | 0.0028 | 0.0244 | 0.84 | 105.520 | 0.0000 | 0.0000 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0.00000 | 0 | 0.00000 | 0.7600 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.76 | 0 | 0.0000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 2.8800 | 1.796 | 0.00000 | 0 | 1 | Egg, whole, fried with oil | 
| 960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 3 | 1 | Supermarket or grocery store | 3 | 41205070 | 0 | 2.0 | 0 | 21000 | 30.0 | 78.00 | 2.4540 | 5.3340 | 5.9580 | 15.44700 | 0 | 0.0 | 0.0 | 0.87300 | 1.770 | 33.900 | 1.00800 | 13.500 | 70.800 | 75.300 | 144.30 | 0.52200 | 0.15300 | 2.6700 | 1.35 | 0.09150 | 0.03870 | 0.408900 | 0.03660 | 33.90 | 0.00 | 33.90 | 33.900 | 0.0000 | 0.30 | 0.00 | 5.1 | 0 | 0 | 0 | 0.6 | 0.3270 | 1.710 | 0.0 | 0.7287 | 0.0000 | 0.0000 | 0.0000 | 0.0006 | 0.000 | 0.00840 | 0.515400 | 0.172800 | 2.56620 | 0.032400 | 2.52060 | 0.009900 | 0 | 1.75350 | 1.707600 | 0.04440 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 0.00 | 8.640 | 0.0000 | 0.0000 | 0.012 | 0 | 0 | 0.012 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.093 | 0.00000 | 0 | 0.00000 | 0.3660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.3660 | 0.369 | 0.000 | 0.000 | 0 | 0 | 3.9450 | 0.087 | 0.00000 | 0 | 1 | Hummus, plain | 
| 960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 4 | 1 | Not applicable | 4 | 94000100 | 0 | 32.0 | 0 | 30000 | 960.0 | 0.00 | 0.0000 | 0.0000 | 0.0000 | 959.04000 | 0 | 0.0 | 0.0 | 0.00000 | 0.000 | 28.800 | 0.00000 | 9.600 | 0.000 | 0.000 | 38.40 | 0.09600 | 0.09600 | 0.0000 | 0.00 | 0.00000 | 0.00000 | 0.000000 | 0.00000 | 0.00 | 0.00 | 0.00 | 0.000 | 0.0000 | 0.00 | 0.00 | 0.0 | 0 | 0 | 0 | 0.0 | 0.0000 | 0.000 | 0.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.00000 | 0.000000 | 0.000000 | 0.00000 | 0.000000 | 0.00000 | 0.000000 | 0 | 0.00000 | 0.000000 | 0.00000 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 0.00 | 0.000 | 0.0000 | 0.0000 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0.00000 | 0 | 0.00000 | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.0000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.0000 | 0.000 | 0.00000 | 0 | 1 | Water, tap | 
| 960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 5 | 1 | Supermarket or grocery store | 5 | 92306800 | 0 | 6.0 | 0 | 30000 | 180.0 | 90.00 | 2.7900 | 1.7640 | 16.1640 | 158.67000 | 0 | 16.2 | 1.8 | 15.87600 | 0.180 | 102.600 | 0.07200 | 12.600 | 77.400 | 151.200 | 39.60 | 0.37800 | 0.02340 | 2.7000 | 0.00 | 0.03420 | 0.16560 | 0.081000 | 0.03240 | 9.00 | 0.00 | 9.00 | 9.000 | 0.4140 | 45.00 | 45.00 | 3.6 | 0 | 0 | 0 | 0.0 | 0.0360 | 0.180 | 7.2 | 1.0728 | 0.0504 | 0.0378 | 0.0306 | 0.0414 | 0.045 | 0.18000 | 0.468000 | 0.203400 | 0.46260 | 0.012600 | 0.44100 | 0.000000 | 0 | 0.09000 | 0.061200 | 0.02880 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 1.08 | 13.680 | 0.0000 | 0.0000 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0.00000 | 0 | 0.00000 | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.0000 | 0.000 | 0.342 | 0.342 | 0 | 0 | 0.0000 | 1.206 | 2.75400 | 0 | 1 | Tea, hot, chai, with milk | 
| 960a78fa-fdf8-417d-a5d2-e29d7984ac8d | THR01 | e6541891-8a22-49e5-b1c0-fbb853234a73 | 1 | 0 | 2 | 01/18/2022 0:00 | 01/18/2022 23:59 | 01/19/2022 | 1 | 1 | 01/18/2022 7:00 | 1 | NA | 4 | 1 | 6 | 2 | Supermarket or grocery store | 6 | 11350020 | 0 | 0.5 | 0 | 10205 | 122.0 | 18.30 | 0.7198 | 1.3420 | 0.7076 | 118.40100 | 0 | 0.0 | 0.0 | 0.00000 | 0.000 | 240.340 | 0.42700 | 8.540 | 12.200 | 81.740 | 86.62 | 0.08540 | 0.03538 | 0.2440 | 0.00 | 0.07320 | 0.05734 | 0.091500 | 0.01830 | 1.22 | 0.00 | 1.22 | 1.220 | 0.7686 | 52.46 | 52.46 | 0.0 | 0 | 0 | 0 | 0.0 | 3.4282 | 0.000 | 0.0 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.000 | 0.00000 | 0.000000 | 0.000000 | 0.86376 | 0.007320 | 0.85644 | 0.000000 | 0 | 0.28792 | 0.287920 | 0.00000 | 0 | 0.0000 | 0 | 0.0000 | 0.0000 | 1.22 | 0.000 | 3.4282 | 0.7686 | 0.000 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0.00000 | 0 | 0.00000 | 0.1708 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0.1708 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0.7686 | 0.000 | 0.00000 | 0 | 1 | Almond milk, unsweetened | 
DHQ3 data format:
DHQ3 dietary data for each individual
| Respondent ID | Record Number | Sex (1=male; 2=female) | Age | Questionnaire Date (YYYYMMDD) | Gram weight (g) | Energy (kcal) | *Gluten (g) | Alcohol (g) | Protein (g) | *Nitrogen (g) | *Total protein (g) | *Animal protein (g) | *Vegetable protein (g) | Total fat (g) | *Solid fat (g) | Total saturated fatty acids (g) | Total monounsaturated fatty acids (g) | Total polyunsaturated fatty acids (g) | *Total saturated fatty acids (g) | *Total monounsaturated fatty acids (g) | *Total polyunsaturated fatty acids (g) | *Polyunsaturated to saturated fatty acid ratio | Cholesterol (mg) | *Cholesterol to saturated fatty acid index | Carbohydrate (g) | Total sugars (g) | *Total sugars (g) | *Added sugars (g) | *Added sugars by total sugars (g) | *Available carbohydrate (g) | *Glycemic load (glucose reference) | *Glycemic load (bread reference) | *Fructose (g) | *Galactose (g) | *Glucose (g) | *Lactose (g) | *Maltose (g) | *Sucrose (g) | *Starch (g) | Dietary fiber (g) | *Total dietary fiber (g) | *Soluble dietary fiber (g) | *Insoluble dietary fiber (g) | *Pectins (g) | Retinol (mcg) | *Total vitamin A activity (International Units) (IU) | Vitamin A, retinol activity (mcg) | *Total vitamin A activity (RE) (mcg) | Beta-carotene (mcg) | *Beta-carotene (mcg) | Alpha-carotene (mcg) | Beta-cryptoxanthin (mcg) | Lutein + zeaxanthin (mcg) | Lycopene (mcg) | Vitamin E as alpha-tocopherol (mg) | *Vitamin E (Alpha Tocopherol) (mg) | Added alpha-tocopherol (mg) | *Total alpha-tocopherol (mg) | *Beta-tocopherol (mg) | *Gamma-tocopherol (mg) | *Delta-tocopherol (mg) | *Vitamin E (International Units) (IU) | *Natural alpha-tocopherol (RRR-alpha-tocopherol or d-alpha-tocopherol) (mg) | *Synthetic alpha-tocopherol (all rac-alpha-tocopherol or dl-alpha-tocopherol) (mg) | Vitamin K (mcg) | Vitamin C (mg) | Thiamin (Vitamin B1) (mg) | Riboflavin (Vitamin B2) (mg) | Niacin (mg) | *Niacin (mg) | Vitamin B6 (mg) | Total folate (mcg) | Folate, dietary folate (mcg) | Food folate (mcg) | Folic acid (mcg) | Vitamin B12 (mcg) | Added vitamin B12 (mcg) | *Pantothenic acid (mg) | Vitamin D (D2 + D3) (mcg) | *Vitamin D (calciferol) (mcg) | *Vitamin D (ergocalciferol) (mcg) | *Vitamin D (cholecalciferol (mcg) | Calcium (mg) | Phosphorus (mg) | Magnesium (mg) | Iron (mg) | Zinc (mg) | Copper (mg) | Selenium (mcg) | Sodium (mg) | Potassium (mg) | *Manganese (mg) | SFA 4:0 (Butanoic) (g) | SFA 6:0 (Hexanoic) (g) | SFA 8:0 (Octanoic) (g) | SFA 10:0 (Decanoic) (g) | SFA 12:0 (Dodecanoic) (g) | SFA 14:0 (Tetradecanoic) (g) | SFA 16:0 (Hexadecanoic) (g) | *SFA 17:0 (margaric acid) (g) | SFA 18:0 (Octadecanoic) (g) | *SFA 20:0 (arachidic acid) (g) | *SFA 22:0 (behenic acid) (g) | MFA 16:1 (Hexadecenoic) (g) | MFA 18:1 (Octadecenoic) (g) | MFA 20:1 (Eicosenoic) (g) | MFA 22:1 (Docosenoic) (g) | *MFA 14:1 (Myristoleic) (g) | PFA 18:2 (Octadecadienoic) (g) | PFA 18:3 (Octadecatrienoic) (g) | *PFA 18:3 N3 (Alpha linolenic) (g) | PFA 18:4 (Octadecatetraenoic) (g) | PFA 20:4 (Eicosatetraenoic) (g) | PFA 20:5 (Eicosapentaenoic) (g) | PFA 22:5 (Docosapentaenoic) (g) | PFA 22:6 (Docosahexaenoic) (g) | *Trans 18:1 (Trans-octadecenoic acid [elaidic acid]) (g) | *Trans 18:2 (Trans-octadecadienoic acid [linolelaidic acid]; incl. c-t, t-c, t-t) (g) | *Trans 16:1 (Trans-hexadecenoic acid) (g) | *Total trans fatty acitds (g) | *Omega-3 fatty acids (g) | *CLA 18:2 (Linoleic) (g) | *CLA cis9 trans11 (g) | *CLA trans10 cis12 (g) | *Tryptophan (g) | *Threonine (g) | *Isoleucine (g) | *Leucine (g) | *Lysine (g) | *Methionine (g) | *Cystine (g) | *Phenylalanine (g) | *Tyrosine (g) | *Valine (g) | *Arginine (g) | *Histidine (g) | *Alanine (g) | *Aspartic acid (g) | *Glutamin acid (g) | *Glycine (g) | *Proline (g) | *Serine (g) | *Daidzein (mg) | *Genistein (mg) | *Glycitein (mg) | *Coumestrol (mg) | *Biochanin A (mg) | *Formononetin (mg) | *Erythritol (g) | *Inositol (g) | *Isomalt (g) | *Lactitol (g) | *Maltitol (g) | *Mannitol (g) | *Pinitol (g) | *Sorbitol (g) | *Xylitol (g) | Caffeine (mg) | Theobromine (mg) | Moisture (g) | *Water (g) | Total Choline (mg) | *Aspartame (mg) | *Saccharin (mg) | *Phytic acid (mg) | *Oxalic acid (mg) | *3-Methylhistidine (mg) | *Sucrose polyester (g) | *Ash (g) | *Acesulfame potassium (mg) | *Sucralose (mg) | *Tagatose (g) | *Betaine (mg) | Citrus, melon, berry fruit (cups) | Other fruit (cups) | Fruits (cups) | Juice fruit (cups) | Total fruit (cups) | Dark-green vegetable (cups) | Red/orange tomato vegetable (cups) | Red/orange other vegetable (cups) | Total red/orange vegetable (cups) | White potato starchy vegetable (cups) | Other starchy vegetable (cups) | Total starchy vegetable (cups) | Other vegetable (cups) | Total vegetable (cups) | Legumes vegetable (cups) | Whole grain (oz) | Refined grain (oz) | Total number of grain (oz) | Meat from beef, pork, veal, lamb, and game protein foods (oz) | Cured meat protein foods (oz) | Meat from organ meat protein foods (oz) | Poultry protein foods (oz) | Seafood high in omega-3 protein foods (oz) | Seafood low in omega-3 protein foods (oz) | Seafood (oz) | Total meat, poultry, seafood protein foods (oz) | Eggs protein foods (oz) | Meat, poultry, and eggs (oz) | Soy products protein foods (oz) | Nuts and seeds protein foods (oz) | Legumes protein foods (oz) | Nuts, seeds, soy, and legumes (oz) | Total protein foods (oz) | Milk (cups) | Yogurt (cups) | Cheese (cups) | Total dairy (cups) | Oil (g) | Solid fat (g) | Added sugars (tsp) | Alcohol (drink(s)) | Energy from fat (% kcal) | Energy from carbohydrates (% kcal) | Energy from protein (% kcal) | Energy from alcohol (% kcal) | Energy from saturated fatty acids (% kcal) | Energy from monounsaturated fatty acids (% kcal) | Energy from polyunsaturated fatty acids (% kcal) | SUPP_ENERGY_KCAL_DSID | SUPP_PROTEIN_G_DSID | SUPP_TOTAL_FAT_G_DSID | SUPP_TOTAL_POLYUNSATURATED_FATTY_ACIDS_G_DSID | SUPP_CHOLESTEROL_MG_DSID | SUPP_CARBOHYDRATE_G_DSID | SUPP_TOTAL_SUGARS_G_DSID | SUPP_DIETARY_FIBER_G_DSID | SUPP_SOLUBLE_DIETARY_FIBER_G_DSID | SUPP_TOTAL_VITAMIN_A_ACTIVITY_IU_DSID | SUPP_VITAMIN_A_RAE_MCG_DSID | SUPP_BETA_CAROTENE_PERCENT_DSID | SUPP_LUTEIN_ZEAXANTHIN_MCG_DSID | SUPP_LYCOPENE_MCG_DSID | SUPP_BIOTIN_MCG_DSID | SUPP_VITAMIN_E_AS_ALPHA_TOCOPHEROL_MG_DSID | SUPP_VITAMIN_E_IU_DSID | SUPP_VITAMIN_K_MCG_DSID | SUPP_VITAMIN_C_MG_DSID | SUPP_THIAMIN_VITAMIN_B1_MG_DSID | SUPP_RIBOFLAVIN_VITAMIN_B2_MG_DSID | SUPP_NIACIN_MG_DSID | SUPP_VITAMIN_B6_MG_DSID | SUPP_FOLATE_DFE_MCG_DSID | SUPP_FOLIC_ACID_MCG_DSID | SUPP_VITAMIN_B12_MCG_DSID | SUPP_PANTOTHENIC_ACID_MG_DSID | SUPP_VITAMIN_D_D2+D3_MCG_DSID | SUPP_BORON_MCG_DSID | SUPP_CALCIUM_MG_DSID | SUPP_CHLORIDE_MG_DSID | SUPP_CHROMIUM_MCG_DSID | SUPP_COPPER_MG_DSID | SUPP_FLUORIDE_MG_DSID | SUPP_IODINE_MCG_DSID | SUPP_IRON_MG_DSID | SUPP_MAGNESIUM_MG_DSID | SUPP_MANGANESE_MG_DSID | SUPP_MOLYBDENUM_MCG_DSID | SUPP_NICKEL_MCG_DSID | SUPP_PHOSPHORUS_MG_DSID | SUPP_POTASSIUM_MG_DSID | SUPP_SELENIUM_MCG_DSID | SUPP_SILICON_MG_DSID | SUPP_SODIUM_MG_DSID | SUPP_TIN_MCG_DSID | SUPP_VANADIUM_MCG_DSID | SUPP_ZINC_MG_DSID | SUPP_PFA_20_5_EICOSAPENTAENOIC_ACID_G_DSID | SUPP_PFA_22_6_DOCOSAHEXAENOIC_ACID_G_DSID | SUPP_OMEGA_3_FATTY_ACIDS_G_DSID | SUPP_INOSITOL_G_DSID | SUPP_CHOLINE_MG_DSID | Total HEI-2015 Score | HEI-2015 - Total Vegetables - Component Score | HEI-2015 - Greens and Beans - Component Score | HEI-2015 - Total Fruits - Component Score | HEI-2015 - Whole Fruits - Component Score | HEI-2015 - Whole Grains - Component Score | HEI-2015 - Dairy - Component Score | HEI-2015 - Total Protein Foods - Component Score | HEI-2015 - Seafood and Plant Proteins - Component Score | HEI-2015 - Fatty Acids - Component Score | HEI-2015 - Sodium - Component Score | HEI-2015 - Refined Grains - Component Score | HEI-2015 - Saturated Fats - Component Score | HEI-2015 - Added Sugars - Component Score | HEI-2015 - Density of Total Vegetables per 1000 Kcal | HEI-2015 - Density of Greens and Beans per 1000 Kcal | HEI-2015 - Density of Total Fruits per 1000 Kcal | HEI-2015 - Density of Whole Fruits per 1000 Kcal | HEI-2015 - Density of Whole Grains per 1000 Kcal | HEI-2015 - Density of Dairy per 1000 Kcal | HEI-2015 - Density of Total Protein Foods per 1000 Kcal | HEI-2015 - Density of Seafood and Plant Proteins per 1000 Kcal | HEI-2015 - Fatty Acid Ratio | HEI-2015 - Density of Sodium per 1000 Kcal | HEI-2015 - Density of Refined Grains per 1000 Kcal | HEI-2015 - Percent of Calories from Saturated Fats | HEI-2015 - Percent of Calories from Added Sugars | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 24 | 20220108 | 3898.66 | 1849.01 | 5.09 | 0.00 | 87.88 | 14.25 | 88.38 | 54.11 | 34.27 | 75.11 | 27.64 | 22.48 | 27.15 | 18.85 | 23.57 | 24.38 | 19.52 | 19.98 | 238.41 | 35.57 | 209.48 | 51.82 | 51.61 | 16.87 | 13.67 | 192.49 | 108.61 | 155.30 | 10.56 | 0.19 | 11.59 | 12.31 | 1.66 | 14.98 | 125.49 | 22.13 | 23.35 | 5.53 | 17.81 | 3.07 | 251.24 | 13821.42 | 833.93 | 1566.50 | 6627.53 | 7739.48 | 650.51 | 75.45 | 7224.13 | 3568.97 | 7.76 | 7.61 | 0.00 | 9.69 | 0.44 | 18.51 | 5.05 | 11.33 | 7.61 | 0.00 | 398.50 | 77.83 | 2.15 | 1.80 | 25.98 | 42.49 | 2.05 | 436.72 | 528.47 | 306.57 | 130.27 | 4.40 | 0.26 | 4.85 | 4.97 | 5.26 | 0.01 | 5.26 | 966.28 | 1321.90 | 437.24 | 14.61 | 13.36 | 1.47 | 123.76 | 3360.72 | 2787.80 | 4.59 | 0.33 | 0.20 | 0.31 | 0.43 | 1.14 | 1.90 | 12.10 | 0.08 | 5.38 | 0.13 | 0.10 | 0.99 | 25.39 | 0.33 | 0.05 | 0.16 | 15.32 | 3.16 | 3.09 | 0.01 | 0.11 | 0.04 | 0.02 | 0.07 | 2.05 | 0.36 | 0.04 | 2.47 | 3.27 | 0.11 | 0.08 | 0.03 | 1.00 | 3.51 | 3.94 | 6.93 | 6.20 | 1.97 | 1.11 | 3.96 | 2.99 | 4.62 | 5.18 | 2.62 | 4.44 | 8.20 | 15.80 | 3.85 | 4.93 | 4.10 | 1.58 | 2.08 | 0.33 | 0.06 | 0.47 | 0.00 | 0.00 | 0.41 | 0 | 0 | 0 | 0.18 | 0.01 | 0.15 | 0.02 | 181.66 | 11.75 | 3507.29 | 3531.87 | 354.78 | 25.12 | 0.00 | 849.95 | 326.50 | 21.94 | 0.00 | 16.67 | 4.21 | 0.54 | 0.39 | 140.98 | 0.31 | 0.62 | 0.93 | 0.00 | 0.93 | 0.53 | 0.17 | 0.17 | 0.34 | 0.09 | 0.10 | 0.17 | 0.67 | 1.72 | 0.54 | 2.29 | 3.94 | 6.23 | 4.42 | 0.30 | 0.01 | 0.26 | 0.27 | 0.18 | 0.45 | 5.47 | 0.33 | 5.32 | 0.38 | 0.09 | 2.18 | 2.65 | 6.26 | 0.96 | 0.04 | 0.15 | 1.14 | 31.12 | 23.51 | 3.29 | 0.00 | 36.56 | 45.32 | 19.01 | 0.00 | 10.94 | 13.22 | 9.18 | 0.00 | 0 | 0.00 | 0.00 | 114.29 | 0.00 | 0.00 | 0 | 0 | 1000.00 | 300.00 | 8.29 | 0.00 | 0 | 8.57 | 5.74 | 8.57 | 7.14 | 17.14 | 0.43 | 0.49 | 5.71 | 0.57 | 194.29 | 114.29 | 1.71 | 2.86 | 2.86 | 21.43 | 57.14 | 20.57 | 10.00 | 0.14 | 0 | 42.86 | 5.14 | 14.29 | 0.66 | 12.86 | 1.43 | 5.71 | 22.86 | 15.71 | 0.57 | 0 | 2.86 | 2.86 | 3.14 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 74.69 | 5.00 | 5.00 | 3.16 | 5.00 | 8.25 | 4.76 | 5.00 | 5.00 | 6.51 | 2.03 | 8.67 | 6.32 | 10.00 | 1.23 | 0.58 | 0.50 | 0.50 | 1.24 | 0.62 | 4.57 | 1.67 | 2.05 | 1.82 | 2.13 | 10.94 | 2.85 | 
| 2 | 2 | 2 | 24 | 20220126 | 2371.25 | 1109.42 | 6.13 | 0.00 | 38.77 | 6.63 | 39.97 | 9.76 | 30.21 | 44.95 | 11.37 | 10.65 | 17.96 | 13.01 | 10.57 | 15.58 | 13.88 | 13.52 | 138.93 | 17.47 | 146.33 | 39.47 | 38.56 | 12.39 | 10.83 | 121.57 | 67.11 | 95.94 | 9.92 | 0.12 | 10.03 | 1.68 | 2.27 | 14.14 | 74.37 | 20.13 | 21.16 | 5.24 | 15.93 | 2.65 | 220.55 | 11657.31 | 734.01 | 1301.83 | 5879.28 | 6585.29 | 496.10 | 82.43 | 2800.94 | 2671.64 | 7.66 | 8.79 | 1.49 | 10.60 | 0.76 | 10.59 | 2.44 | 13.36 | 8.45 | 0.77 | 138.07 | 68.13 | 1.33 | 1.03 | 12.53 | 20.05 | 1.43 | 373.02 | 468.66 | 236.34 | 136.78 | 1.64 | 0.99 | 2.82 | 1.75 | 1.80 | 0.27 | 1.53 | 563.58 | 718.57 | 233.49 | 11.96 | 6.85 | 1.11 | 51.72 | 1841.31 | 1724.09 | 3.64 | 0.12 | 0.07 | 0.10 | 0.14 | 0.40 | 0.63 | 6.17 | 0.04 | 2.39 | 0.19 | 0.29 | 0.36 | 17.20 | 0.21 | 0.00 | 0.03 | 11.53 | 1.31 | 1.30 | 0.00 | 0.07 | 0.00 | 0.01 | 0.02 | 0.81 | 0.16 | 0.02 | 0.99 | 1.32 | 0.02 | 0.02 | 0.00 | 0.48 | 1.40 | 1.67 | 2.97 | 2.02 | 0.71 | 0.63 | 1.98 | 1.27 | 1.96 | 2.57 | 1.02 | 1.73 | 3.86 | 8.32 | 1.68 | 2.63 | 2.03 | 1.67 | 2.35 | 0.36 | 0.00 | 0.41 | 0.01 | 0.00 | 0.29 | 0 | 0 | 0 | 0.14 | 0.03 | 0.09 | 0.01 | 0.40 | 5.62 | 2129.17 | 2139.36 | 183.66 | 1.37 | 0.17 | 806.87 | 311.97 | 1.32 | 0.01 | 11.70 | 0.04 | 0.04 | 0.27 | 99.39 | 0.23 | 0.63 | 0.87 | 0.01 | 0.88 | 0.30 | 0.17 | 0.27 | 0.44 | 0.10 | 0.04 | 0.14 | 0.34 | 1.22 | 0.42 | 1.27 | 3.44 | 4.72 | 0.16 | 0.03 | 0.00 | 0.17 | 0.00 | 0.01 | 0.01 | 0.37 | 0.59 | 0.96 | 0.41 | 1.44 | 1.67 | 3.51 | 2.81 | 0.11 | 0.01 | 0.23 | 0.36 | 22.09 | 11.49 | 3.03 | 0.00 | 36.46 | 52.76 | 13.98 | 0.00 | 8.64 | 14.57 | 10.55 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 1.99 | 0.00 | 0.00 | 0.00 | 9.95 | 6.64 | 1.33 | 1.66 | 0.13 | 45.13 | 26.55 | 1.00 | 0.37 | 1.66 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 77.84 | 5.00 | 5.00 | 4.97 | 5.00 | 7.65 | 2.46 | 5.00 | 5.00 | 10.00 | 3.78 | 4.78 | 9.20 | 10.00 | 1.48 | 0.64 | 0.80 | 0.78 | 1.15 | 0.32 | 4.03 | 3.17 | 2.91 | 1.66 | 3.10 | 8.64 | 4.37 | 
| 3 | 3 | 2 | 23 | 20220126 | 5364.16 | 2133.67 | 5.35 | 5.88 | 74.24 | 12.01 | 74.22 | 39.80 | 34.42 | 75.58 | 34.91 | 22.30 | 29.17 | 17.31 | 22.31 | 30.90 | 15.75 | 60.57 | 201.31 | 32.25 | 291.08 | 137.34 | 134.10 | 70.97 | 64.43 | 259.50 | 145.27 | 207.70 | 34.64 | 0.23 | 31.54 | 7.76 | 1.90 | 59.33 | 93.86 | 28.81 | 32.69 | 10.95 | 21.75 | 5.54 | 262.22 | 20258.83 | 1192.88 | 2184.25 | 9996.00 | 11679.51 | 2152.91 | 190.05 | 8073.37 | 16992.22 | 13.38 | 12.48 | 1.86 | 14.96 | 0.39 | 15.61 | 2.42 | 18.98 | 11.87 | 1.34 | 438.97 | 283.18 | 1.58 | 2.43 | 28.44 | 40.13 | 2.95 | 556.30 | 620.57 | 464.83 | 91.52 | 3.96 | 0.77 | 8.71 | 3.65 | 2.99 | 0.00 | 2.99 | 986.56 | 1320.70 | 411.69 | 14.16 | 11.09 | 1.74 | 86.98 | 3985.08 | 4446.37 | 6.33 | 0.50 | 0.29 | 0.20 | 0.44 | 0.48 | 1.91 | 12.47 | 0.12 | 5.09 | 0.17 | 0.15 | 1.01 | 26.96 | 0.27 | 0.01 | 0.15 | 15.18 | 1.74 | 1.62 | 0.01 | 0.10 | 0.03 | 0.02 | 0.07 | 3.32 | 0.45 | 0.06 | 3.84 | 1.80 | 0.12 | 0.10 | 0.02 | 0.83 | 2.85 | 3.10 | 5.40 | 4.69 | 1.47 | 0.91 | 3.12 | 2.31 | 3.56 | 4.20 | 1.90 | 3.55 | 7.19 | 13.93 | 3.12 | 4.37 | 3.19 | 0.65 | 0.75 | 0.09 | 0.30 | 0.69 | 0.01 | 0.13 | 0.79 | 0 | 0 | 0 | 0.57 | 0.02 | 0.55 | 0.03 | 555.54 | 50.94 | 4891.41 | 4927.34 | 360.63 | 3.81 | 0.01 | 796.90 | 365.39 | 12.98 | 0.03 | 22.95 | 5.07 | 6.65 | 0.52 | 134.98 | 0.74 | 0.60 | 1.34 | 1.19 | 2.53 | 0.74 | 0.83 | 0.40 | 1.22 | 0.66 | 0.43 | 1.09 | 1.17 | 4.22 | 0.34 | 0.73 | 3.15 | 3.87 | 1.55 | 0.82 | 0.00 | 0.79 | 0.33 | 0.34 | 0.67 | 3.85 | 0.25 | 3.41 | 0.07 | 0.61 | 1.35 | 2.03 | 4.78 | 0.33 | 0.16 | 0.43 | 0.93 | 29.19 | 29.73 | 15.61 | 0.42 | 31.88 | 54.57 | 13.92 | 1.93 | 9.40 | 12.31 | 7.30 | 15.00 | 0 | 0.00 | 0.00 | 800.00 | 3.00 | 3.00 | 0 | 0 | 2500.00 | 750.00 | 0.00 | 275.00 | 0 | 1015.00 | 10.10 | 15.00 | 0.00 | 530.00 | 0.00 | 0.00 | 10.00 | 4.00 | 680.00 | 400.00 | 1012.00 | 10.00 | 45.00 | 150.00 | 0.00 | 0.00 | 120.00 | 0.00 | 0 | 0.00 | 0.00 | 114.29 | 0.00 | 37.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 50.00 | 0.00 | 0.00 | 0.00 | 0 | 0.04 | 69.46 | 5.00 | 5.00 | 5.00 | 5.00 | 2.27 | 3.35 | 5.00 | 5.00 | 6.81 | 1.47 | 10.00 | 8.24 | 7.33 | 2.14 | 0.51 | 1.19 | 0.63 | 0.34 | 0.43 | 2.88 | 1.27 | 2.08 | 1.87 | 1.47 | 9.40 | 11.71 | 
| 4 | 4 | 2 | 23 | 20220126 | 1937.19 | 1170.43 | 3.14 | 1.51 | 29.28 | 4.58 | 28.27 | 14.37 | 13.90 | 31.92 | 14.29 | 8.38 | 12.02 | 8.55 | 8.79 | 11.83 | 8.77 | 29.33 | 67.69 | 12.29 | 197.39 | 111.50 | 109.45 | 56.12 | 49.51 | 179.54 | 107.52 | 153.70 | 30.57 | 0.18 | 27.86 | 4.36 | 1.75 | 43.89 | 52.80 | 13.14 | 12.99 | 4.15 | 8.82 | 2.33 | 258.65 | 4888.50 | 435.15 | 668.06 | 1917.67 | 2394.84 | 272.32 | 146.77 | 1370.05 | 1989.07 | 9.57 | 10.03 | 5.24 | 13.52 | 0.35 | 8.00 | 1.25 | 16.42 | 7.95 | 4.62 | 72.78 | 183.72 | 1.09 | 1.24 | 17.12 | 19.88 | 2.06 | 322.73 | 437.01 | 159.52 | 163.20 | 3.50 | 2.25 | 4.50 | 3.67 | 2.61 | 0.50 | 2.11 | 824.13 | 654.44 | 183.48 | 11.41 | 6.96 | 0.74 | 35.28 | 1412.48 | 2052.53 | 2.51 | 0.16 | 0.09 | 0.07 | 0.14 | 0.22 | 0.63 | 4.69 | 0.03 | 2.02 | 0.06 | 0.04 | 0.32 | 11.38 | 0.11 | 0.01 | 0.03 | 7.78 | 0.59 | 0.59 | 0.01 | 0.03 | 0.02 | 0.01 | 0.04 | 1.80 | 0.22 | 0.01 | 2.04 | 0.68 | 0.04 | 0.03 | 0.01 | 0.31 | 1.03 | 1.15 | 2.05 | 1.71 | 0.58 | 0.36 | 1.21 | 0.90 | 1.38 | 1.62 | 0.71 | 1.41 | 2.80 | 5.35 | 1.20 | 1.85 | 1.24 | 0.13 | 0.17 | 0.03 | 0.08 | 0.05 | 0.01 | 0.10 | 0.53 | 0 | 0 | 0 | 0.14 | 0.00 | 0.62 | 0.02 | 6.67 | 7.19 | 1667.00 | 1679.93 | 125.70 | 5.98 | 0.45 | 401.48 | 115.24 | 4.35 | 0.06 | 8.57 | 4.60 | 7.74 | 0.92 | 75.51 | 0.54 | 0.39 | 0.93 | 1.40 | 2.33 | 0.16 | 0.08 | 0.08 | 0.15 | 0.53 | 0.05 | 0.58 | 0.21 | 1.11 | 0.03 | 0.80 | 1.73 | 2.53 | 0.42 | 0.26 | 0.00 | 0.31 | 0.17 | 0.24 | 0.41 | 1.41 | 0.11 | 1.09 | 0.02 | 0.26 | 0.13 | 0.42 | 1.80 | 0.14 | 0.11 | 0.17 | 0.44 | 14.94 | 9.93 | 11.87 | 0.11 | 24.54 | 67.46 | 10.01 | 0.90 | 6.44 | 9.24 | 6.58 | 15.00 | 0 | 0.00 | 0.00 | 800.00 | 3.00 | 3.00 | 0 | 0 | 2500.00 | 750.00 | 0.00 | 275.00 | 0 | 15.00 | 10.10 | 15.00 | 0.00 | 30.00 | 0.00 | 0.00 | 10.00 | 4.00 | 680.00 | 400.00 | 12.00 | 10.00 | 20.00 | 150.00 | 0.00 | 0.00 | 120.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 37.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.04 | 77.27 | 4.43 | 4.19 | 5.00 | 5.00 | 4.57 | 2.86 | 3.30 | 4.43 | 9.66 | 8.81 | 10.00 | 10.00 | 5.01 | 0.97 | 0.17 | 1.99 | 0.79 | 0.68 | 0.37 | 1.65 | 0.71 | 2.46 | 1.21 | 1.48 | 6.44 | 16.23 | 
| 5 | 5 | 2 | 30 | 20220126 | 3578.55 | 1237.92 | 5.87 | 8.73 | 49.24 | 7.79 | 48.30 | 32.48 | 15.82 | 49.18 | 27.57 | 17.39 | 17.41 | 10.05 | 17.49 | 18.41 | 8.35 | 9.65 | 197.83 | 27.70 | 139.93 | 53.26 | 54.70 | 26.87 | 24.23 | 126.27 | 73.49 | 105.06 | 11.50 | 0.15 | 11.24 | 5.77 | 1.77 | 24.04 | 58.74 | 12.51 | 11.73 | 3.73 | 7.97 | 1.91 | 256.32 | 5398.06 | 454.31 | 718.86 | 2242.58 | 2703.33 | 202.94 | 53.34 | 1909.52 | 2940.11 | 5.22 | 5.91 | 0.31 | 7.31 | 0.19 | 7.87 | 1.89 | 8.97 | 5.49 | 0.93 | 118.51 | 56.61 | 0.91 | 1.20 | 12.60 | 22.08 | 1.16 | 256.09 | 323.94 | 159.13 | 97.04 | 2.25 | 0.17 | 2.91 | 2.08 | 2.57 | 0.01 | 2.56 | 743.55 | 843.68 | 200.67 | 7.83 | 5.99 | 0.92 | 69.94 | 2049.54 | 1540.33 | 1.62 | 0.48 | 0.26 | 0.20 | 0.42 | 0.53 | 1.72 | 9.15 | 0.10 | 3.99 | 0.10 | 0.09 | 0.68 | 16.12 | 0.15 | 0.00 | 0.10 | 8.81 | 0.96 | 0.81 | 0.01 | 0.08 | 0.01 | 0.01 | 0.04 | 2.41 | 0.32 | 0.04 | 2.78 | 0.90 | 0.08 | 0.07 | 0.01 | 0.60 | 1.88 | 2.21 | 3.83 | 3.15 | 1.08 | 0.64 | 2.16 | 1.68 | 2.49 | 2.40 | 1.29 | 2.18 | 4.18 | 9.66 | 1.82 | 3.41 | 2.26 | 0.29 | 0.45 | 0.06 | 0.02 | 0.08 | 0.00 | 0.00 | 0.21 | 0 | 0 | 0 | 0.32 | 0.00 | 0.27 | 0.02 | 15.74 | 24.79 | 3319.15 | 3334.35 | 201.59 | 0.89 | 0.10 | 338.68 | 104.73 | 6.80 | 0.02 | 12.60 | 0.15 | 0.02 | 0.75 | 82.83 | 0.15 | 0.95 | 1.10 | 0.12 | 1.22 | 0.37 | 0.14 | 0.06 | 0.20 | 0.07 | 0.08 | 0.14 | 0.28 | 0.98 | 0.06 | 0.29 | 3.85 | 4.14 | 0.46 | 0.17 | 0.00 | 0.87 | 0.07 | 0.31 | 0.38 | 1.94 | 0.57 | 2.06 | 0.07 | 0.27 | 0.24 | 0.58 | 2.86 | 0.19 | 0.17 | 0.85 | 1.24 | 14.61 | 24.71 | 5.58 | 0.63 | 35.75 | 45.21 | 15.91 | 4.94 | 12.64 | 12.66 | 7.31 | 4.29 | 0 | 0.00 | 0.00 | 228.57 | 0.86 | 0.86 | 0 | 0 | 714.29 | 214.29 | 0.00 | 78.57 | 0 | 4.29 | 2.89 | 4.29 | 0.00 | 8.57 | 0.00 | 0.00 | 2.86 | 1.14 | 194.29 | 114.29 | 3.43 | 2.86 | 5.71 | 42.86 | 0.00 | 0.00 | 34.29 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 10.71 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0 | 0.01 | 63.23 | 3.84 | 5.00 | 5.00 | 5.00 | 1.55 | 7.69 | 4.98 | 4.83 | 2.92 | 3.83 | 4.76 | 4.20 | 9.63 | 0.84 | 0.35 | 0.98 | 0.89 | 0.23 | 1.00 | 2.49 | 0.77 | 1.58 | 1.66 | 3.11 | 12.64 | 7.21 | 
| 6 | 6 | 2 | 30 | 20220126 | 3412.63 | 758.65 | 0.67 | 1.88 | 20.20 | 3.41 | 20.92 | 9.99 | 10.93 | 31.40 | 6.18 | 6.80 | 14.63 | 8.28 | 6.93 | 13.41 | 8.62 | 20.26 | 129.62 | 13.58 | 95.41 | 10.13 | 10.07 | 3.96 | 3.50 | 93.36 | 58.50 | 83.65 | 2.00 | 0.03 | 2.64 | 0.89 | 0.16 | 4.34 | 69.59 | 4.73 | 5.53 | 1.82 | 3.70 | 0.63 | 83.94 | 4063.41 | 261.56 | 467.80 | 1956.21 | 2253.71 | 341.29 | 18.72 | 2132.81 | 1167.57 | 4.22 | 3.88 | 0.11 | 4.87 | 0.34 | 7.58 | 2.03 | 5.82 | 3.82 | 0.14 | 113.93 | 22.91 | 0.67 | 0.55 | 7.69 | 12.24 | 0.66 | 202.32 | 283.54 | 87.75 | 114.94 | 0.77 | 0.10 | 2.44 | 1.13 | 1.10 | 0.00 | 1.10 | 309.88 | 369.15 | 146.88 | 5.39 | 3.43 | 0.65 | 40.47 | 1340.90 | 829.81 | 2.95 | 0.05 | 0.02 | 0.07 | 0.09 | 0.37 | 0.33 | 4.15 | 0.02 | 1.43 | 0.09 | 0.06 | 0.31 | 14.14 | 0.12 | 0.00 | 0.01 | 6.81 | 1.33 | 1.33 | 0.00 | 0.06 | 0.00 | 0.00 | 0.03 | 0.59 | 0.10 | 0.01 | 0.71 | 1.37 | 0.01 | 0.01 | 0.00 | 0.24 | 0.83 | 0.93 | 1.64 | 1.21 | 0.49 | 0.34 | 0.98 | 0.72 | 1.13 | 1.39 | 0.55 | 1.12 | 1.95 | 3.70 | 0.89 | 1.04 | 1.05 | 0.10 | 0.10 | 0.01 | 0.04 | 0.00 | 0.00 | 0.00 | 0.13 | 0 | 0 | 0 | 0.09 | 0.00 | 0.03 | 0.01 | 152.97 | 11.60 | 3255.11 | 3266.47 | 125.21 | 0.43 | 0.00 | 313.46 | 110.63 | 2.68 | 0.00 | 6.36 | 0.30 | 0.52 | 0.07 | 38.48 | 0.01 | 0.08 | 0.09 | 0.07 | 0.16 | 0.17 | 0.09 | 0.07 | 0.15 | 0.01 | 0.01 | 0.02 | 0.19 | 0.51 | 0.00 | 0.86 | 2.70 | 3.57 | 0.41 | 0.09 | 0.00 | 0.01 | 0.05 | 0.05 | 0.09 | 0.61 | 0.56 | 1.07 | 0.01 | 0.04 | 0.00 | 0.06 | 1.23 | 0.05 | 0.01 | 0.06 | 0.12 | 21.02 | 5.80 | 0.79 | 0.13 | 37.26 | 50.31 | 10.65 | 1.73 | 8.06 | 17.35 | 9.83 | 2.86 | 0 | 0.29 | 0.14 | 288.57 | 0.00 | 0.00 | 0 | 0 | 2500.00 | 750.00 | 20.71 | 1714.29 | 0 | 30.00 | 52.64 | 78.57 | 17.86 | 150.29 | 29.64 | 6.93 | 21.43 | 2.00 | 680.00 | 400.00 | 8.57 | 8.71 | 14.29 | 53.57 | 142.86 | 51.43 | 25.00 | 0.59 | 0 | 107.14 | 12.86 | 35.71 | 1.64 | 32.14 | 3.57 | 14.29 | 57.14 | 39.29 | 1.43 | 0 | 7.14 | 7.14 | 17.80 | 0.09 | 0.05 | 0.14 | 0 | 0.00 | 59.61 | 3.07 | 5.00 | 1.33 | 1.46 | 7.60 | 1.18 | 3.25 | 1.25 | 10.00 | 2.58 | 2.96 | 9.92 | 10.00 | 0.68 | 0.22 | 0.21 | 0.12 | 1.14 | 0.15 | 1.63 | 0.20 | 3.37 | 1.77 | 3.56 | 8.06 | 1.67 | 
DHQ3 detailed food data for all foods consumed by each individual
| Respondent ID | Sex (1=male; 2=female) | Question ID | Food ID | Size (0=sm; 1=med; 2=lg) | Daily Freq | Gram weight (g) | Energy (kcal) | *Gluten (g) | Alcohol (g) | Protein (g) | *Nitrogen (g) | *Total protein (g) | *Animal protein (g) | *Vegetable protein (g) | Total fat (g) | *Solid fat (g) | Total saturated fatty acids (g) | Total monounsaturated fatty acids (g) | Total polyunsaturated fatty acids (g) | *Total saturated fatty acids (g) | *Total monounsaturated fatty acids (g) | *Total polyunsaturated fatty acids (g) | *Polyunsaturated to saturated fatty acid ratio | Cholesterol (mg) | *Cholesterol to saturated fatty acid index | Carbohydrate (g) | Total sugars (g) | *Total sugars (g) | *Added sugars (g) | *Added sugars by total sugars (g) | *Available carbohydrate (g) | *Glycemic load (glucose reference) | *Glycemic load (bread reference) | *Fructose (g) | *Galactose (g) | *Glucose (g) | *Lactose (g) | *Maltose (g) | *Sucrose (g) | *Starch (g) | Dietary fiber (g) | *Total dietary fiber (g) | *Soluble dietary fiber (g) | *Insoluble dietary fiber (g) | *Pectins (g) | Retinol (mcg) | *Total vitamin A activity (International Units) (IU) | Vitamin A, retinol activity (mcg) | *Total vitamin A activity (RE) (mcg) | Beta-carotene (mcg) | *Beta-carotene (mcg) | Alpha-carotene (mcg) | Beta-cryptoxanthin (mcg) | Lutein + zeaxanthin (mcg) | Lycopene (mcg) | Vitamin E as alpha-tocopherol (mg) | *Vitamin E (Alpha Tocopherol) (mg) | Added alpha-tocopherol (mg) | *Total alpha-tocopherol (mg) | *Beta-tocopherol (mg) | *Gamma-tocopherol (mg) | *Delta-tocopherol (mg) | *Vitamin E (International Units) (IU) | *Natural alpha-tocopherol (RRR-alpha-tocopherol or d-alpha-tocopherol) (mg) | *Synthetic alpha-tocopherol (all rac-alpha-tocopherol or dl-alpha-tocopherol) (mg) | Vitamin K (mcg) | Vitamin C (mg) | Thiamin (Vitamin B1) (mg) | Riboflavin (Vitamin B2) (mg) | Niacin (mg) | *Niacin (mg) | Vitamin B6 (mg) | Total folate (mcg) | Folate, dietary folate (mcg) | Food folate (mcg) | Folic acid (mcg) | Vitamin B12 (mcg) | Added vitamin B12 (mcg) | *Pantothenic acid (mg) | Vitamin D (D2 + D3) (mcg) | *Vitamin D (calciferol) (mcg) | *Vitamin D (ergocalciferol) (mcg) | *Vitamin D (cholecalciferol (mcg) | Calcium (mg) | Phosphorus (mg) | Magnesium (mg) | Iron (mg) | Zinc (mg) | Copper (mg) | Selenium (mcg) | Sodium (mg) | Potassium (mg) | *Manganese (mg) | SFA 4:0 (Butanoic) (g) | SFA 6:0 (Hexanoic) (g) | SFA 8:0 (Octanoic) (g) | SFA 10:0 (Decanoic) (g) | SFA 12:0 (Dodecanoic) (g) | SFA 14:0 (Tetradecanoic) (g) | SFA 16:0 (Hexadecanoic) (g) | *SFA 17:0 (margaric acid) (g) | SFA 18:0 (Octadecanoic) (g) | *SFA 20:0 (arachidic acid) (g) | *SFA 22:0 (behenic acid) (g) | MFA 16:1 (Hexadecenoic) (g) | MFA 18:1 (Octadecenoic) (g) | MFA 20:1 (Eicosenoic) (g) | MFA 22:1 (Docosenoic) (g) | *MFA 14:1 (Myristoleic) (g) | PFA 18:2 (Octadecadienoic) (g) | PFA 18:3 (Octadecatrienoic) (g) | *PFA 18:3 N3 (Alpha linolenic) (g) | PFA 18:4 (Octadecatetraenoic) (g) | PFA 20:4 (Eicosatetraenoic) (g) | PFA 20:5 (Eicosapentaenoic) (g) | PFA 22:5 (Docosapentaenoic) (g) | PFA 22:6 (Docosahexaenoic) (g) | *Trans 18:1 (Trans-octadecenoic acid [elaidic acid]) (g) | *Trans 18:2 (Trans-octadecadienoic acid [linolelaidic acid]; incl. c-t, t-c, t-t) (g) | *Trans 16:1 (Trans-hexadecenoic acid) (g) | *Total trans fatty acitds (g) | *Omega-3 fatty acids (g) | *CLA 18:2 (Linoleic) (g) | *CLA cis9 trans11 (g) | *CLA trans10 cis12 (g) | *Tryptophan (g) | *Threonine (g) | *Isoleucine (g) | *Leucine (g) | *Lysine (g) | *Methionine (g) | *Cystine (g) | *Phenylalanine (g) | *Tyrosine (g) | *Valine (g) | *Arginine (g) | *Histidine (g) | *Alanine (g) | *Aspartic acid (g) | *Glutamin acid (g) | *Glycine (g) | *Proline (g) | *Serine (g) | *Daidzein (mg) | *Genistein (mg) | *Glycitein (mg) | *Coumestrol (mg) | *Biochanin A (mg) | *Formononetin (mg) | *Erythritol (g) | *Inositol (g) | *Isomalt (g) | *Lactitol (g) | *Maltitol (g) | *Mannitol (g) | *Pinitol (g) | *Sorbitol (g) | *Xylitol (g) | Caffeine (mg) | Theobromine (mg) | Moisture (g) | *Water (g) | Total Choline (mg) | *Aspartame (mg) | *Saccharin (mg) | *Phytic acid (mg) | *Oxalic acid (mg) | *3-Methylhistidine (mg) | *Sucrose polyester (g) | *Ash (g) | *Acesulfame potassium (mg) | *Sucralose (mg) | *Tagatose (g) | *Betaine (mg) | Citrus, melon, berry fruit (cups) | Other fruit (cups) | Fruits (cups) | Juice fruit (cups) | Total fruit (cups) | Dark-green vegetable (cups) | Red/orange tomato vegetable (cups) | Red/orange other vegetable (cups) | Total red/orange vegetable (cups) | White potato starchy vegetable (cups) | Other starchy vegetable (cups) | Total starchy vegetable (cups) | Other vegetable (cups) | Total vegetable (cups) | Legumes vegetable (cups) | Whole grain (oz) | Refined grain (oz) | Total number of grain (oz) | Meat from beef, pork, veal, lamb, and game protein foods (oz) | Cured meat protein foods (oz) | Meat from organ meat protein foods (oz) | Poultry protein foods (oz) | Seafood high in omega-3 protein foods (oz) | Seafood low in omega-3 protein foods (oz) | Seafood (oz) | Total meat, poultry, seafood protein foods (oz) | Eggs protein foods (oz) | Meat, poultry, and eggs (oz) | Soy products protein foods (oz) | Nuts and seeds protein foods (oz) | Legumes protein foods (oz) | Nuts, seeds, soy, and legumes (oz) | Total protein foods (oz) | Milk (cups) | Yogurt (cups) | Cheese (cups) | Total dairy (cups) | Oil (g) | Solid fat (g) | Added sugars (tsp) | Alcohol (drink(s)) | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | 11 | 1140.4 | 1 | 0.01 | 4.62 | 0.03 | 0 | 0 | 0.01 | 0 | 0.00 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.16 | 0.27 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 0.23 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 4.61 | 4.62 | 0 | 2.38 | 0 | 0 | 0.01 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 1 | 1 | 11 | 1140.3 | 1 | 0.01 | 4.69 | 0.08 | 0 | 0 | 0.01 | 0 | 0.01 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.15 | 0.37 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.36 | 0.34 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.58 | 0 | 4.67 | 4.67 | 0 | 2.41 | 0 | 0 | 0.01 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 1 | 1 | 12 | 1140.4 | 1 | 0.02 | 9.26 | 0.06 | 0 | 0 | 0.01 | 0 | 0.01 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.32 | 0.54 | 0.04 | 0.00 | 0.00 | 0.00 | 0.01 | 0.44 | 0.46 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 9.24 | 9.25 | 0 | 4.77 | 0 | 0 | 0.02 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 1 | 1 | 12 | 1140.3 | 1 | 0.02 | 9.40 | 0.16 | 0 | 0 | 0.01 | 0 | 0.01 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.30 | 0.74 | 0.10 | 0.01 | 0.00 | 0.00 | 0.00 | 0.72 | 0.68 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.17 | 0 | 9.36 | 9.36 | 0 | 4.82 | 0 | 0 | 0.01 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 1 | 1 | 16 | 1154.2 | 1 | 2.33 | 1033.78 | 0.00 | 0 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 101.91 | 0.00 | 20.35 | 0.00 | 0.02 | 0.07 | 0.00 | 26.18 | 0.63 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 1033.54 | 1033.24 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.53 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| 1 | 1 | 17 | 1154.2 | 1 | 2.88 | 1277.89 | 0.00 | 0 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 125.98 | 0.00 | 25.15 | 0.00 | 0.03 | 0.09 | 0.00 | 32.36 | 0.78 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 1277.60 | 1277.23 | 0 | 0.00 | 0 | 0 | 0.00 | 0 | 0 | 0.65 | 0 | 0 | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
Block FFQ data format:
| RESPONDENTID | BOOKNUM | TODAYSDATE | SEX | PREGNANT | AGE | WEIGHT | HEIGHTFEET | HEIGHTINCHES | BMI | DT_KCAL | DT_PROT | DT_TFAT | DT_CARB | DT_CALC | DT_PHOS | DT_IRON | DT_SODI | DT_POTA | DT_GSH_T | DT_GSH_R | DT_THIA | DT_RIBO | DT_NIAC | DT_VITC | DT_SFAT | DT_MFAT | DT_PFAT | DT_CHOL | DT_FIBE | DT_SOLFIBR | DT_FOLFD | DT_ATOC | DT_ZINC | DT_AN_ZN | DT_VITB6 | DT_MAGN | DT_VARAE | DT_RET | DT_ACARO | DT_BCARO | DT_CRYPT | DT_LUTZE | DT_LYCO | DT_FOLAC | DT_VB12 | DT_VITD | DT_VITK | DT_COPP | DT_SEL | DT_SUG_T | DT_TRFAT | DT_ISOFLV | DT_QUERC | DT_CYSTEN | DT_METHI | DT_CYSTI | FOL_DFE | GI | GL | DT_ARGININE | DT_FA182 | DT_FA183 | DT_FA184 | DT_FA204 | DT_FA205 | DT_FA225 | DT_FA226 | DT_TOTN6 | DT_TOTN3 | DT_FRUCT | DT_LACT | DT_MALT | DT_GALAC | DT_SUCR | DT_GLUC | TOTAL_CHOLINE | FREE_CHOLINE | PHOSPHOCHOLINE | GLYCEROPHOSPHOCHOLINE_GPC | PHOSPHATIDYLCHOLINE_PTD | BETAINE | SPHINGOMYELIN_SM | DT_CAFFN | DT_THEOB | DT_ALCO | GROUP_SOLID_COUNT | GROUP_SOLID_TOTAL_FREQUENCY | GROUP_SOLID_TOTAL_GRAMS | PCTFAT | PCTPROT | PCTCARB | PCTSWEET | PCTALCH | BA_PFAT | BA_PPROT | BA_PCARB | GROUP_BEANFIBER_TOTAL_FIBE | GROUP_VEGETABLESFRUITFIBER_TOTAL_FIBE | GROUP_GRAINFIBER_TOTAL_FIBE | GROUP_SUGARYBEVG_TOTAL_GRAMS | GROUP_SUGARYBEVG_TOTAL_KCAL | VEGSRV | FRUITSRV | GRAINSRV | MEATSRV | DAIRYSRV | FATSRV | WGRAINS | SUP_VITA | SUP_VITC | SUP_VITD | SUP_VITE | SUP_IRON | SUP_CA | SUP_ZINC | SUP_BCAR | SUP_B1 | SUP_B6 | SUP_B12 | SUP_FOL | SUP_CU | SUP_SE | SUP_B2 | SUP_MG | SUP_NIAC | SUP_OM_3 | SUP_OM_6 | ADD_SUG | A_BEV | DFAT_OIL | DFAT_SOL | D_CHEESE | D_MILK | D_TOTAL | D_YOGURT | F_CITMLB | F_OTHER | F_TOTAL | F_SOLID | F_JUICE | JUICE100 | G_NWHL | G_TOTAL | G_WHL | LEGUMES | M_EGG | M_FISH_HI | M_FISH_LO | M_FRANK | M_MEAT | M_MPF | M_NUTSD | M_ORGAN | M_POULT | M_SOY | V_DPYEL | V_DRKGR | V_OTHER | V_POTATO | V_STARCY | V_TOMATO | V_TOTAL | PSFRUIT | PSVEGNBP | PSVEGDKG | PSVEGORN | PSLEGSOY | PSVEGPOT | PSVEGOTH | PSGTOT | PSGWHL | PSMFP | PSNUTSD | PSEGGS | PSDAIRY | PSOILS | BREAKSANDFREQ | BREAKSANDQUAN | OTHEREGGSFREQ | OTHEREGGSQUAN | SAUSAGEFREQ | SAUSAGEQUAN | BACONFREQ | BACONQUAN | PANCAKESFREQ | PANCAKESQUAN | COOKEDCEREALFREQ | COOKEDCEREALQUAN | COLDCEREALFREQ | COLDCEREALQUAN | MILKONCEREALFREQ | BUTTERMILKFREQ | BUTTERMILKQUAN | YOGURTONLYFREQ | YOGURTONLYQUAN | CHEESEFREQ | CHEESEQUAN | BANANAFREQ | BANANAQUAN | APPLESPEARSFREQ | APPLESPEARSQUAN | ORANGESFREQ | ORANGESQUAN | GRAPEFRUITFREQ | GRAPEFRUITQUAN | PEACHESFREQ | PEACHESQUAN | CANTALOUPEFREQ | CANTALOUPEQUAN | STRAWBERRIESFREQ | STRAWBERRIESQUAN | WATERMELONFREQ | WATERMELONQUAN | OTHERFRUITFREQ | OTHERFRUITQUAN | CANNEDFRUITFREQ | CANNEDFRUITQUAN | BROCCOLIFREQ | BROCCOLIQUAN | CARROTSFREQ | CARROTSQUAN | CORNFREQ | CORNQUAN | BEANSPEASFREQ | BEANSPEASQUAN | SPINACHCOOKEDFREQ | SPINACHCOOKEDQUAN | GREENSFREQ | GREENSQUAN | SWEETPOTATOESFREQ | SWEETPOTATOESQUAN | FRIESFREQ | FRIESQUAN | POTATOESFREQ | POTATOESQUAN | COLESLAWCABBAGEFREQ | COLESLAWCABBAGEQUAN | GREENSALADFREQ | GREENSALADQUAN | TOMATOESFREQ | TOMATOESQUAN | SALADDRESSINGFREQ | SALADDRESSINGQUAN | OTHERVEGGIESFREQ | OTHERVEGGIESQUAN | REFRIEDBEANSFREQ | REFRIEDBEANSQUAN | PINTOBEANSFREQ | PINTOBEANSQUAN | VEGGIESTEWFREQ | VEGGIESTEWQUAN | VEGSOUPFREQ | VEGSOUPQUAN | PEASOUPFREQ | PEASOUPQUAN | OTHERSOUPFREQ | OTHERSOUPQUAN | PIZZAFREQ | PIZZAQUAN | SPAGHETTIFREQ | SPAGHETTIQUAN | MACARONIFREQ | MACARONIQUAN | OTHERNOODLESFREQ | OTHERNOODLESQUAN | TOFUFREQ | TOFUQUAN | MEATSUBSTITUTEFREQ | MEATSUBSTITUTEQUAN | EATMEAT | BURGERFREQ | BURGERQUAN | HOTDOGFREQ | HOTDOGQUAN | BOLOGNAFREQ | BOLOGNAQUAN | MEATLOAFFREQ | MEATLOAFQUAN | STEAKFREQ | STEAKQUAN | TACOSFREQ | TACOSQUAN | RIBSFREQ | RIBSQUAN | PORKFREQ | PORKQUAN | VEALFREQ | VEALQUAN | LIVERFREQ | LIVERQUAN | FEETFREQ | FEETQUAN | MENUDOFREQ | MENUDOQUAN | MIXEDBEEFPORKFREQ | MIXEDBEEFPORKQUAN | FRIEDCHICKENFREQ | FRIEDCHICKENQUAN | NOTFRIEDCHICKENFREQ | NOTFRIEDCHICKENQUAN | MIXEDCHICKFREQ | MIXEDCHICKQUAN | OYSTERSFREQ | OYSTERSQUAN | SHELLFISHFREQ | SHELLFISHQUAN | TUNAFREQ | TUNAQUAN | FRIEDFISHFREQ | FRIEDFISHQUAN | NOTFRIEDFISHFREQ | NOTFRIEDFISHQUAN | BISCUITSFREQ | BISCUITSQUAN | BUNSFREQ | BUNSQUAN | BAGELFREQ | BAGELQUAN | TORTILLASFREQ | TORTILLASQUAN | CORNBREADFREQ | CORNBREADQUAN | OTHERBREADFREQ | OTHERBREADQUAN | RICEFREQ | RICEQUAN | MARGARINEFREQ | MARGARINEQUAN | BUTTERFREQ | BUTTERQUAN | PEANUTBUTTERFREQ | PEANUTBUTTERQUAN | JELLYFREQ | JELLYQUAN | MAYOFREQ | MAYOQUAN | SALSAFREQ | SALSAQUAN | MUSTARDFREQ | MUSTARDQUAN | SALTYSNACKSFREQ | SALTYSNACKSQUAN | CRACKERFREQ | CRACKERQUAN | NUTSFREQ | NUTSQUAN | POWERBARSFREQ | POWERBARSQUAN | BREAKFASTBARSFREQ | BREAKFASTBARSQUAN | DONUTFREQ | DONUTQUAN | CAKEFREQ | CAKEQUAN | COOKIESFREQ | COOKIESQUAN | ICECREAMFROYOFREQ | ICECREAMFROYOQUAN | CHOCOLATESYRUPFREQ | CHOCOLATESYRUPQUAN | PUMPKINPIEFREQ | PUMPKINPIEQUAN | OTHERPIEFREQ | OTHERPIEQUAN | CHOCOLATECANDYFREQ | CHOCOLATECANDYQUAN | CANDYFREQ | CANDYQUAN | MILKFREQ | MILKQUAN | DIETSHAKESFREQ | DIETSHAKESQUAN | TOMATOJUICEFREQ | TOMATOJUICEQUAN | ORANGEJUICEFREQ | ORANGEJUICEQUAN | REALJUICEFREQ | REALJUICEQUAN | HICFREQ | HICQUAN | SOMEJUICEFREQ | SOMEJUICEQUAN | ICEDTEAFREQ | ICEDTEAQUAN | KOOLAIDFREQ | KOOLAIDQUAN | SOFTDRINKSFREQ | SOFTDRINKSQUAN | BEERFREQ | BEERQUAN | WINEFREQ | WINEQUAN | LIQUORFREQ | LIQUORQUAN | WATERFREQ | WATERQUAN | COFFEEFREQ | COFFEEQUAN | HOTTEAFREQ | HOTTEAQUAN | CREAMINCOFFEE | CREAMINTEA | SUGARINCOFFEE | COFFEESUGARTEASPOONS | SUGARINTEA | TEASUGARTEASPOONS | VEGGIESFREQ | FRUITSFREQ | FATOILFREQ | MILKTYPE | DIETSHAKESTYPE | ORANGEJUICETYPE | SOFTDRINKSTYPE | ICEDTEATYPE | BEERTYPE | BURGERTYPE | HOTDOGTYPE | BOLOGNATYPE | SPAGHETTITYPE | CHEESETYPE | SALADDRESSTYPE | POWERBARSTYPE | BREAKFASTBARSTYPE | BREADTYPE | TORTILLATYPE | CHOCCANDYTYPE | COOKIESTYPE | CAKETYPE | ICECREAMFROYOTYPE | JELLYTYPE | FATONMEATTYPE | CHICKENSKINTYPE | COOKINGFATPAMORNONE | COOKINGFATBUTTER | COOKINGFATHALF | COOKINGFATSTICKMARG | COOKINGFATSOFTMARG | COOKINGFATDIET | COOKINGFATVEGGIE | COOKINGFATOLIVE | COOKINGFATLARD | COOKINGFATCRISCO | LCCEREALTYPE | CHEERIOSTYPE | TOTALTYPE | FIBERONETYPE | PRODUCT19TYPE | ALLBRANTYPE | OTHERFIBERTYPE | SWEETENEDTYPE | CORNFLAKESTYPE | PRENATALAMOUNT | PRENATALYEARS | ONEADAYAMOUNT | ONEADAYYEARS | STRESSTABSAMOUNT | STRESSTABSYEARS | VITAMINAAMOUNT | VITAMINAYEARS | BETACAROTENEAMOUNT | BETACAROTENEYEARS | VITAMINCAMOUNT | VITAMINCYEARS | VITAMINEAMOUNT | VITAMINEYEARS | FOLATEAMOUNT | FOLATEYEARS | CALCIUMAMOUNT | CALCIUMYEARS | VITAMINDAMOUNT | VITAMINDYEARS | ZINCAMOUNT | ZINCYEARS | IRONAMOUNT | IRONYEARS | SELENIUMAMOUNT | SELENIUMYEARS | OMEGA3AMOUNT | OMEGA3YEARS | PROBIOTICSAMOUNT | PROBIOTICSYEARS | MINERALSYESORNO | MGVITAMINCPERDAY | MGVITAMINEPERDAY | OTHEREGGSTYPE | ATEANYFISH | FRIEDFISH2FREQ | FRIEDFISH2QUAN | TUNA2FREQ | TUNA2QUAN | SALMONFREQ | SALMONQUAN | HALIBUTFREQ | HALIBUTQUAN | TROUTFREQ | TROUTQUAN | MACKERELFREQ | MACKERELQUAN | HERRINGFREQ | HERRINGQUAN | SARDINESFREQ | SARDINESQUAN | OTHERWHITEFISHFREQ | OTHERWHITEFISHQUAN | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 1236.28 | 38.06 | 43.17 | 183.70 | 497.60 | 771.04 | 10.74 | 1754.18 | 1728.82 | 29.94 | 17.51 | 1.05 | 1.34 | 11.83 | 105.74 | 13.09 | 16.43 | 9.96 | 236.49 | 13.53 | 4.29 | 153.72 | 5.43 | 6.53 | 2.50 | 1.51 | 203.68 | 468.00 | 326.82 | 58.74 | 1539.07 | 247.27 | 1762.05 | 2712.87 | 125.77 | 2.66 | 94.51 | 90.16 | 1.01 | 56.13 | 97.01 | 1.070 | 0.418 | 2.32 | 0.506 | 0.787 | 0.541 | 367.53 | 54.44 | 92.65 | 1983.86 | 8.88 | 0.737 | 0.00248 | 0.0876 | 0.01600 | 0.00305 | 0.0371 | 8.97 | 0.796 | 28.75 | 6.06 | 2.45 | 0.2620 | 29.51 | 24.96 | 225.79 | 36.98 | 6.46 | 23.51 | 147.31 | 57.75 | 11.17 | 0.953 | 9.07 | 1.500e-04 | 65 | 7.07 | 777.05 | 31.43 | 12.31 | 59.44 | 7.57 | 0.00 | 31.43 | 12.31 | 59.44 | 1.440 | 5.29 | 6.98 | 73.96 | 27.41 | 0.720 | 2.870 | 4.80 | 1.18 | 0.761 | 1.66 | 0.3080 | 1515 | 85 | 200 | 5 | 27 | 40 | 11 | 0 | 1.4 | 1.9 | 2.6 | 600 | 1 | 60 | 1.4 | 0 | 18 | 0 | 0 | 9.12 | 0.000 | 13.15 | 20.73 | 0.333 | 0.316 | 0.878 | 0.2170 | 0.758 | 1.600 | 2.340 | 1.470 | 0.868 | 0.851 | 2.36 | 3.94 | 1.590 | 0.025800 | 0.767 | 0.0145 | 0.0943 | 0.244 | 0.605 | 1.03 | 0.66500 | 0.003750 | 0.0679 | 0.01140 | 0.00768 | 0.154000 | 0.1870 | 0.1990 | 0.027700 | 0.0957 | 0.672 | 2.010 | 0.440 | 0.148000 | 0.00707 | 0.026600 | 0.1840 | 0.283 | 4.06 | 1.740 | 1.05 | 0.46000 | 0.892 | 0.761 | 1.210 | 2 | 1 | 7 | 2 | 4 | 1 | 4 | 4 | 4 | 2 | 7 | 3 | 7 | 4 | 7 | 4 | 4 | 4 | 3 | 7 | 1 | 4 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 4 | 4 | 7 | 3 | 3 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 4 | 3 | 1 | 2 | 3 | 3 | 1 | 2 | 3 | 2 | 4 | 2 | 3 | 1 | 4 | 4 | 4 | 1 | 4 | 3 | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 4 | 4 | 4 | 2 | 4 | 3 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 2 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 6 | 1 | 3 | 2 | 1 | 2 | 1 | 1 | 4 | 2 | 4 | 2 | 3 | 2 | 7 | 1 | 1 | 1 | 4 | 2 | 4 | 2 | 4 | 1 | 3 | 2 | 3 | 2 | 6 | 4 | 5 | 1 | 7 | 1 | 1 | 1 | 4 | 1 | 2 | 2 | 4 | 2 | 3 | 1 | 2 | 4 | 1 | 2 | 1 | 2 | 1 | 2 | 4 | 2 | 4 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 7 | 2 | 7 | 2 | 2 | 2 | 2 | 3 | 1 | 1 | 4 | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 9 | 4 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 7 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 1 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | M | 1 | M | M | M | M | M | 1 | M | 4 | 1 | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | M | 3 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 
| 2 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 2396.83 | 68.37 | 111.94 | 286.85 | 625.03 | 1125.41 | 11.22 | 2746.08 | 1796.85 | 42.98 | 27.32 | 1.08 | 1.34 | 17.45 | 39.80 | 36.42 | 46.59 | 20.74 | 266.90 | 11.05 | 3.90 | 99.19 | 6.34 | 10.57 | 6.97 | 1.23 | 220.81 | 316.83 | 278.79 | 37.98 | 409.13 | 47.20 | 289.38 | 1412.01 | 130.08 | 3.72 | 40.34 | 37.46 | 1.20 | 86.85 | 174.16 | 7.480 | 2.150 | 3.77 | 1.070 | 1.440 | 0.654 | 320.32 | 50.04 | 138.01 | 3339.03 | 18.14 | 1.410 | 0.00264 | 0.1280 | 0.00920 | 0.00556 | 0.0238 | 18.27 | 1.450 | 47.92 | 9.35 | 2.15 | 0.0789 | 61.37 | 40.92 | 236.80 | 44.32 | 6.00 | 42.89 | 130.19 | 123.02 | 13.58 | 68.870 | 143.72 | 7.420e-05 | 55 | 5.80 | 665.56 | 42.03 | 11.41 | 47.87 | 44.76 | 0.00 | 42.03 | 11.41 | 47.87 | 0.335 | 2.65 | 5.64 | 868.60 | 327.64 | 0.916 | 0.319 | 5.02 | 2.79 | 0.522 | 4.85 | 0.0353 | 1515 | 185 | 200 | 5 | 92 | 40 | 61 | 0 | 1.4 | 1.9 | 2.6 | 1000 | 1 | 60 | 1.4 | 0 | 18 | 0 | 0 | 35.95 | 0.000 | 20.90 | 74.63 | 0.646 | 0.298 | 0.988 | 0.0218 | 0.123 | 0.258 | 0.378 | 0.208 | 0.169 | 0.108 | 5.15 | 5.40 | 0.252 | 0.030300 | 0.306 | 0.0195 | 0.1120 | 0.531 | 2.620 | 4.33 | 0.77300 | 0.013400 | 1.0300 | 0.03540 | 0.01180 | 0.000813 | 0.0911 | 0.4800 | 0.006450 | 0.0640 | 0.667 | 0.319 | 0.283 | 0.000813 | 0.00612 | 0.029500 | 0.4520 | 0.210 | 5.28 | 0.562 | 4.36 | 0.56400 | 0.338 | 0.956 | 0.330 | 4 | 1 | 4 | 3 | 4 | 2 | 4 | 3 | 4 | 3 | 2 | 3 | 4 | 4 | 4 | 2 | 2 | 3 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 7 | 3 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 3 | 3 | 4 | 3 | 1 | 2 | 6 | 3 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 6 | 3 | 4 | 2 | 4 | 2 | 1 | 2 | 4 | 3 | 6 | 3 | 2 | 2 | 4 | 3 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 3 | 1 | 2 | 7 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 4 | 2 | 4 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 7 | 3 | 4 | 2 | 4 | 2 | 1 | 1 | 1 | 1 | 7 | 2 | 7 | 3 | 5 | 3 | 3 | 3 | 1 | 2 | 2 | 2 | 3 | 2 | 8 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 4 | 2 | 4 | 2 | 4 | 3 | 6 | 2 | 4 | 3 | 9 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 9 | 4 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | M | M | M | M | M | M | M | 1 | 1 | 4 | 1 | 1 | M | 1 | M | 1 | M | 1 | M | 4 | 1 | 1 | M | 4 | 1 | 1 | M | 1 | M | 4 | 1 | 4 | 1 | 1 | M | 1 | M | 1 | M | 1 | M | M | 4 | 1 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | 
| 3 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 3195.49 | 121.19 | 153.43 | 334.52 | 1398.52 | 2165.03 | 23.13 | 5679.46 | 3652.43 | 63.13 | 37.69 | 2.41 | 3.43 | 32.72 | 104.63 | 49.50 | 60.98 | 31.59 | 491.79 | 20.75 | 7.17 | 244.03 | 15.15 | 18.24 | 10.91 | 2.90 | 383.39 | 1086.41 | 907.71 | 224.09 | 1968.79 | 147.50 | 2027.03 | 9433.25 | 317.49 | 10.04 | 403.63 | 129.25 | 1.58 | 160.82 | 136.47 | 4.750 | 1.740 | 3.27 | 1.510 | 2.620 | 1.550 | 783.77 | 54.88 | 172.20 | 6017.81 | 27.25 | 2.950 | 0.00323 | 0.2010 | 0.02600 | 0.00995 | 0.0670 | 27.45 | 3.050 | 25.32 | 32.54 | 4.53 | 0.3090 | 37.58 | 27.85 | 490.77 | 102.77 | 20.01 | 80.42 | 257.12 | 212.84 | 28.52 | 4.550 | 19.20 | 1.177e+01 | 69 | 10.77 | 1171.41 | 43.21 | 15.17 | 41.87 | 8.46 | 1.16 | 43.72 | 15.35 | 42.37 | 1.340 | 5.66 | 13.25 | 398.42 | 143.61 | 1.550 | 1.150 | 12.53 | 5.03 | 2.670 | 4.44 | 0.8930 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 15.83 | 0.808 | 34.31 | 92.91 | 0.575 | 2.510 | 3.100 | 0.0000 | 0.403 | 0.744 | 1.150 | 0.910 | 0.239 | 0.151 | 8.74 | 10.61 | 1.870 | 0.061700 | 0.885 | 0.2480 | 0.9130 | 3.250 | 2.370 | 7.77 | 0.44100 | 0.014500 | 0.9480 | 0.02690 | 0.06390 | 0.194000 | 0.2460 | 0.5530 | 0.125000 | 0.4520 | 1.640 | 0.916 | 0.932 | 0.192000 | 0.04030 | 0.056200 | 0.5150 | 0.688 | 10.60 | 2.530 | 7.95 | 0.33600 | 0.967 | 3.030 | 4.180 | 6 | 1 | 6 | 2 | 7 | 2 | 4 | 3 | 6 | 3 | 7 | 3 | 7 | 4 | 8 | 1 | 3 | 1 | 3 | 4 | 2 | 8 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 4 | 3 | 2 | 2 | 6 | 2 | 5 | 3 | 4 | 3 | 4 | 3 | 6 | 2 | 4 | 2 | 7 | 2 | 1 | 2 | 2 | 1 | 4 | 3 | 2 | 2 | 7 | 2 | 4 | 2 | 1 | 2 | 4 | 3 | 1 | 2 | 5 | 3 | 4 | 2 | 2 | 2 | 4 | 2 | 2 | 3 | 2 | 3 | 1 | 3 | 4 | 3 | 5 | 2 | 7 | 3 | 4 | 3 | 2 | 3 | 1 | 2 | 1 | 1 | 1 | 4 | 1 | 8 | 2 | 5 | 2 | 4 | 3 | 6 | 2 | 6 | 3 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 1 | 3 | 4 | 3 | 6 | 2 | 1 | 2 | 4 | 3 | 1 | 2 | 4 | 3 | 4 | 2 | 4 | 3 | 4 | 2 | 7 | 3 | 5 | 2 | 4 | 2 | 1 | 1 | 4 | 3 | 6 | 2 | 4 | 3 | 4 | 2 | 4 | 2 | 1 | 2 | 4 | 2 | 6 | 2 | 6 | 2 | 6 | 2 | 9 | 3 | 6 | 2 | 5 | 2 | 1 | 1 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 1 | 2 | 3 | 1 | 2 | 2 | 2 | 4 | 2 | 5 | 2 | 5 | 2 | 9 | 2 | 1 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 1 | 1 | 7 | 3 | 4 | 2 | 1 | 1 | 1 | 2 | 4 | 3 | 9 | 2 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 3 | 5 | 6 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 3 | 2 | 1 | 2 | 3 | 2 | 2 | 2 | 1 | 2 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | M | M | M | M | M | M | M | 1 | 1 | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | 1 | M | M | 1 | 1 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | 
| 4 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 2374.05 | 61.73 | 73.84 | 385.21 | 952.67 | 1210.01 | 14.11 | 2539.16 | 2609.20 | 32.88 | 18.66 | 1.66 | 2.10 | 18.16 | 171.26 | 26.85 | 27.51 | 14.37 | 209.16 | 24.83 | 7.72 | 214.55 | 8.27 | 8.65 | 2.12 | 2.00 | 310.63 | 899.72 | 562.35 | 83.56 | 3875.43 | 354.89 | 627.65 | 4632.37 | 153.28 | 3.09 | 170.80 | 43.22 | 1.49 | 81.72 | 207.60 | 3.210 | 2.070 | 21.26 | 0.776 | 1.170 | 0.711 | 475.13 | 56.80 | 204.69 | 2134.28 | 12.53 | 0.992 | 0.00141 | 0.0840 | 0.00582 | 0.00164 | 0.0119 | 12.61 | 1.010 | 39.68 | 15.81 | 8.86 | 0.1340 | 139.92 | 35.68 | 241.97 | 71.14 | 10.47 | 45.70 | 104.36 | 227.86 | 8.87 | 116.860 | 103.99 | 1.270e-03 | 31 | 9.08 | 780.32 | 27.99 | 10.40 | 64.90 | 39.90 | 0.00 | 27.99 | 10.40 | 64.90 | 0.000 | 8.02 | 16.28 | 1330.00 | 331.08 | 0.758 | 2.700 | 6.79 | 1.14 | 1.140 | 6.02 | 0.0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 0.0 | 0 | 0 | 0 | 0 | 33.83 | 0.000 | 11.61 | 44.92 | 0.281 | 1.090 | 1.390 | 0.0000 | 1.050 | 1.900 | 2.930 | 2.030 | 0.899 | 0.837 | 7.83 | 9.46 | 1.640 | 0.000645 | 0.452 | 0.0265 | 0.0258 | 0.300 | 0.464 | 1.15 | 0.31200 | 0.000000 | 0.3300 | 0.06580 | 0.26100 | 0.000374 | 0.0260 | 0.1510 | 0.000884 | 0.1600 | 0.581 | 2.090 | 0.357 | 0.000374 | 0.21300 | 0.000781 | 0.1460 | 0.144 | 9.72 | 2.150 | 1.24 | 0.28600 | 0.544 | 1.310 | 0.199 | 7 | 1 | 3 | 1 | 5 | 1 | 1 | 1 | 7 | 2 | 1 | 3 | 7 | 4 | 6 | 1 | 3 | 1 | 3 | 1 | 1 | 6 | 2 | 7 | 3 | 7 | 3 | 1 | 2 | 7 | 2 | 1 | 2 | 7 | 1 | 3 | 4 | 4 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 7 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 6 | 1 | 1 | 2 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 5 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 2 | 5 | 2 | 1 | 2 | 2 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 2 | 6 | 2 | 1 | 1 | 7 | 2 | 1 | 1 | 1 | 2 | 7 | 2 | 2 | 2 | 6 | 2 | 7 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3 | 2 | 9 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 7 | 2 | 3 | 2 | 2 | 2 | 9 | 4 | 3 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 7 | 2 | 6 | 3 | 7 | 2 | 1 | 2 | 5 | 2 | 6 | 2 | 6 | 3 | 1 | 2 | 1 | 2 | 9 | 3 | 9 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 9 | 4 | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 7 | 1 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 1 | 3 | 2 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | M | 1 | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | M | 1 | M | M | 2 | 1 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | M | 2 | 
| 5 | NA | NA | 1 | NA | NA | NA | NA | NA | NA | 1965.05 | 47.03 | 34.53 | 385.79 | 749.59 | 1019.08 | 15.62 | 2044.02 | 3977.15 | 69.15 | 49.24 | 1.50 | 1.69 | 12.26 | 457.86 | 11.56 | 12.23 | 6.61 | 222.03 | 21.12 | 6.71 | 568.66 | 8.53 | 6.67 | 2.01 | 2.04 | 387.32 | 1412.56 | 280.63 | 123.72 | 13149.44 | 755.76 | 19834.62 | 4700.64 | 50.68 | 2.26 | 79.12 | 887.52 | 1.51 | 59.65 | 300.38 | 0.439 | 0.244 | 11.10 | 0.718 | 0.978 | 0.716 | 654.82 | 48.36 | 176.37 | 2750.03 | 5.11 | 0.946 | 0.00130 | 0.0840 | 0.00936 | 0.00257 | 0.0219 | 5.19 | 0.981 | 131.35 | 6.66 | 1.26 | 0.1450 | 38.92 | 97.96 | 304.64 | 69.69 | 15.70 | 40.95 | 170.32 | 919.27 | 8.50 | 72.300 | 3.79 | 0.000e+00 | 50 | 8.33 | 1107.19 | 15.81 | 9.57 | 78.53 | 29.42 | 0.00 | 15.81 | 9.57 | 78.53 | 0.937 | 16.94 | 3.77 | 1341.37 | 569.92 | 4.910 | 5.000 | 2.65 | 1.52 | 0.498 | 1.79 | 0.0486 | 1515 | 85 | 200 | 5 | 27 | 40 | 11 | 0 | 1.4 | 1.9 | 2.6 | 600 | 1 | 60 | 1.4 | 0 | 18 | 0 | 0 | 33.44 | 0.000 | 2.37 | 20.99 | 0.183 | 0.537 | 0.787 | 0.0494 | 3.700 | 3.070 | 6.670 | 2.670 | 4.000 | 3.800 | 1.84 | 3.09 | 1.250 | 0.009700 | 0.639 | 0.3850 | 0.3800 | 0.205 | 0.585 | 1.73 | 0.00544 | 0.000297 | 0.1680 | 0.00148 | 0.00718 | 1.670000 | 0.3720 | 0.0545 | 0.225000 | 0.0768 | 2.400 | 5.100 | 2.340 | 1.660000 | 0.01080 | 0.005570 | 0.0359 | 0.666 | 3.00 | 1.190 | 1.80 | 0.00263 | 0.803 | 0.705 | 0.358 | 7 | 1 | 6 | 1 | 2 | 1 | 3 | 2 | 4 | 2 | 8 | 3 | 5 | 2 | 8 | 5 | 1 | 3 | 2 | 1 | 1 | 9 | 2 | 9 | 2 | 5 | 2 | 1 | 2 | 5 | 2 | 9 | 2 | 9 | 3 | 9 | 3 | 9 | 2 | 1 | 2 | 8 | 3 | 1 | 2 | 8 | 2 | 1 | 2 | 9 | 3 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 8 | 3 | 1 | 2 | 3 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 3 | 5 | 3 | 1 | 3 | 2 | 2 | 2 | 1 | 3 | 3 | 3 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 1 | 2 | 4 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 3 | 3 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | 2 | 3 | 1 | 3 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 7 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 2 | 1 | 2 | 9 | 3 | 9 | 3 | 7 | 3 | 1 | 2 | 1 | 1 | 2 | 1 | 9 | 4 | 1 | 1 | 1 | 2 | 1 | 1 | 8 | 4 | 1 | 1 | 5 | 1 | 4 | 4 | 1 | 1 | 2 | 1 | 6 | 8 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 2 | 1 | 2 | 3 | 3 | 3 | 1 | 2 | 3 | 3 | 3 | 3 | 2 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | M | 1 | M | M | M | M | M | M | M | 4 | 1 | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | 1 | M | M | 3 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 
Your own dietary assessment tool data format:
| id | gender | age | kcal | total_fruit | whole_fruit | total_vegetable | green_and_bean | total_protein | seafood_plant_protein | whole_grain | dairy | fatty_acid | refined_grain | sodium | added_sugar | saturated_fat | EXP_HEI2020_ALL | EXP_HEI2020_TOTALFRT | EXP_HEI2020_FRT | EXP_HEI2020_VEG | EXP_HEI2020_GREENNBEAN | EXP_HEI2020_TOTALPRO | EXP_HEI2020_SEAPLANTPRO | EXP_HEI2020_WHOLEGRAIN | EXP_HEI2020_DAIRY | EXP_HEI2020_FATTYACID | EXP_HEI2020_REFINEDGRAIN | EXP_HEI2020_SODIUM | EXP_HEI2020_ADDEDSUGAR | EXP_HEI2020_SATFAT | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2 | 18 | 1000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.20 | 1.80 | 1.10 | 6.50 | 8.0 | 40 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | 0 | 0 | 10 | 10 | 10 | 10 | 
| 2 | 2 | 18 | 1000 | 0.08 | 0.04 | 0.11 | 0.02 | 0.25 | 0.08 | 0.15 | 0.13 | 1.33 | 2.05 | 1.19 | 8.45 | 8.8 | 42 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 
| 3 | 2 | 18 | 1000 | 0.16 | 0.08 | 0.22 | 0.04 | 0.50 | 0.16 | 0.30 | 0.26 | 1.46 | 2.30 | 1.28 | 10.40 | 9.6 | 44 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 
| 4 | 2 | 18 | 1000 | 0.24 | 0.12 | 0.33 | 0.06 | 0.75 | 0.24 | 0.45 | 0.39 | 1.59 | 2.55 | 1.37 | 12.35 | 10.4 | 46 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 3 | 3 | 3 | 7 | 7 | 7 | 7 | 
| 5 | 2 | 18 | 1000 | 0.32 | 0.16 | 0.44 | 0.08 | 1.00 | 0.32 | 0.60 | 0.52 | 1.72 | 2.80 | 1.46 | 14.30 | 11.2 | 48 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 
| 6 | 2 | 18 | 1000 | 0.40 | 0.20 | 0.55 | 0.10 | 1.25 | 0.40 | 0.75 | 0.65 | 1.85 | 3.05 | 1.55 | 16.25 | 12.0 | 50 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 
Examples for using dietaryindex’s functions:
Remember, when using dietaryindex’s functions for NHANES, the complex survey design has to be taken into account! See the examples below. ___
NHANES functions
Calculating HEI2020 for NHANES_FPED (after 2005)
# Using the first day nutrition data
FPED_PATH_1 = "/Users/james/Desktop/fped_dr1tot_1718.sas7bdat"
NUTRIENT_PATH_1 = "/Users/james/Desktop/DR1TOT_J.XPT"
DEMO_PATH_1 = "/Users/james/Desktop/DEMO_J.XPT"
HEI2020_NHANES_FPED(FPED_PATH=FPED_PATH_1, NUTRIENT_PATH=NUTRIENT_PATH_1, DEMO_PATH=DEMO_PATH_1)
# only the first day nutrition data
# Use the NHANES example data in 2017-2018 using only the first day nutrition data
HEI2020_NHANES_FPED_unweighted_d1 = HEI2020_NHANES_FPED(FPED_PATH=NHANES_20172018$FPED, NUTRIENT_PATH=NHANES_20172018$NUTRIENT, DEMO_PATH=NHANES_20172018$DEMO)
# set up survey design for NHANES data 2017-2018 day 1
NHANES_20172018_design_d1 = NHANES_20172018$FPED %>%
    filter(!is.na(WTDRD1)) %>%
    ## select the variables needed for the survey design
    select(SEQN, SDMVPSU, SDMVSTRA, WTDRD1)
# Merge the NHANES data with weighting variables with the HEI2020 results
NHANES_20172018_design_d1_HEI2020 = inner_join(HEI2020_NHANES_FPED_unweighted_d1, NHANES_20172018_design_d1, by = "SEQN")
print(NHANES_20172018_design_d1_HEI2020)## # A tibble: 7,284 × 19
##     SEQN RIDAGEYR HEI2020_ALL HEI2020_TOTALFRT HEI2020_FRT HEI2020_VEG
##    <dbl>    <dbl>       <dbl>            <dbl>       <dbl>       <dbl>
##  1 93704        2        63.5            5           0          3.03  
##  2 93705       66        41.1            0           0          5     
##  3 93706       18        44.5            0           0          1.65  
##  4 93707       13        41.6            0           0          2.41  
##  5 93708       66        58.5            2.45        4.90       5     
##  6 93711       56        67.1            2.13        3.12       5     
##  7 93712       18        69.5            5           5          3.49  
##  8 93713       67        52.9            4.69        5          4.57  
##  9 93714       54        38.6            0.376       0.702      0.638 
## 10 93715       71        40.0            1.55        3.11       0.0706
## # ℹ 7,274 more rows
## # ℹ 13 more variables: HEI2020_GREENNBEAN <dbl>, HEI2020_TOTALPRO <dbl>,
## #   HEI2020_SEAPLANTPRO <dbl>, HEI2020_WHOLEGRAIN <dbl>, HEI2020_DAIRY <dbl>,
## #   HEI2020_FATTYACID <dbl>, HEI2020_REFINEDGRAIN <dbl>, HEI2020_SODIUM <dbl>,
## #   HEI2020_ADDEDSUGAR <dbl>, HEI2020_SATFAT <dbl>, SDMVPSU <dbl>,
## #   SDMVSTRA <dbl>, WTDRD1 <dbl>
# set up survey design for NHANES data 2017-2018 day 1
NHANES_design_1718_d1 <- svydesign(
    ## Masked variance pseudo-PSU
    id = ~SDMVPSU, 
    ## Masked variance pseudo-stratum
    strata = ~SDMVSTRA, 
    ## Dietary day one sample weight
    weight = ~WTDRD1, 
    data = NHANES_20172018_design_d1_HEI2020, 
    nest = TRUE) 
# summarize the weighted results
tbl_svysummary(
    data=NHANES_design_1718_d1,
    statistic = list(all_categorical() ~ "{n_unweighted} ({p}%)", all_continuous() ~ "{mean} ({mean.std.error})")
    )| Characteristic | N = 316,222,0391 | 
|---|---|
| Respondent sequence number | 98,306 (46) | 
| Age in years at screening | 39 (1) | 
| HEI2020_ALL | 49 (1) | 
| HEI2020_TOTALFRT | 2.01 (0.07) | 
| HEI2020_FRT | 2.08 (0.09) | 
| HEI2020_VEG | 2.77 (0.05) | 
| HEI2020_GREENNBEAN | 1.41 (0.06) | 
| HEI2020_TOTALPRO | 4.07 (0.04) | 
| HEI2020_SEAPLANTPRO | 2.20 (0.05) | 
| HEI2020_WHOLEGRAIN | 2.4 (0.1) | 
| HEI2020_DAIRY | 5.1 (0.1) | 
| HEI2020_FATTYACID | 4.7 (0.1) | 
| HEI2020_REFINEDGRAIN | 5.8 (0.1) | 
| HEI2020_SODIUM | 4.7 (0.1) | 
| HEI2020_ADDEDSUGAR | 6.7 (0.1) | 
| HEI2020_SATFAT | 5.3 (0.1) | 
| Masked variance pseudo-PSU | |
| 1 | 3,537 (49%) | 
| 2 | 3,747 (51%) | 
| Masked variance pseudo-stratum | 140.9 (0.2) | 
| Dietary day one sample weight | 112,339 (6,641) | 
| 1 Mean (SE); n (unweighted) (%) | |
##################################################
# first day + second day nutrition data
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
HEI2020_NHANES_FPED_unweighted_d1d2 = HEI2020_NHANES_FPED(FPED_PATH=NHANES_20172018$FPED, NUTRIENT_PATH=NHANES_20172018$NUTRIENT, DEMO_PATH=NHANES_20172018$DEMO, FPED_PATH2=NHANES_20172018$FPED2, NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)
# set up survey design for NHANES data 2017-2018 day 1 and day 2
## filter out the missing values for the weight variable WTDR2D
NHANES_20172018_design_d1d2 = NHANES_20172018$FPED %>%
    filter(!is.na(WTDR2D)) %>%
    ## select the variables needed for the survey design
    select(SEQN, SDMVPSU, SDMVSTRA, WTDR2D)
# Merge the NHANES data with weighting variables with the HEI2020 results
NHANES_20172018_design_d1d2_HEI2020 = inner_join(HEI2020_NHANES_FPED_unweighted_d1d2, NHANES_20172018_design_d1d2, by = "SEQN")
print(NHANES_20172018_design_d1d2_HEI2020)## # A tibble: 6,315 × 19
##     SEQN RIDAGEYR HEI2020_ALL HEI2020_TOTALFRT HEI2020_FRT HEI2020_VEG
##    <dbl>    <dbl>       <dbl>            <dbl>       <dbl>       <dbl>
##  1 93704        2        61.7           5            2.5         1.55 
##  2 93705       66        43.0           0.0759       0           3.46 
##  3 93707       13        38.9           0            0           2.09 
##  4 93708       66        49.9           1.22         2.45        3.20 
##  5 93711       56        69.0           3.57         2.85        3.75 
##  6 93712       18        46.4           2.5          2.5         2.42 
##  7 93713       67        55.4           4.84         5           3.47 
##  8 93714       54        36.1           0.321        0.617       1.85 
##  9 93715       71        30.7           0.777        1.55        0.614
## 10 93716       61        65.0           5            5           4.03 
## # ℹ 6,305 more rows
## # ℹ 13 more variables: HEI2020_GREENNBEAN <dbl>, HEI2020_TOTALPRO <dbl>,
## #   HEI2020_SEAPLANTPRO <dbl>, HEI2020_WHOLEGRAIN <dbl>, HEI2020_DAIRY <dbl>,
## #   HEI2020_FATTYACID <dbl>, HEI2020_REFINEDGRAIN <dbl>, HEI2020_SODIUM <dbl>,
## #   HEI2020_ADDEDSUGAR <dbl>, HEI2020_SATFAT <dbl>, SDMVPSU <dbl>,
## #   SDMVSTRA <dbl>, WTDR2D <dbl>
# calculate the weighted results using the survey design
NHANES_design_1718_d1d2 <- svydesign(
    ## Masked variance pseudo-PSU
    id = ~SDMVPSU, 
    ## Masked variance pseudo-stratum
    strata = ~SDMVSTRA, 
    ## Dietary two-day sample weight
    weight = ~WTDR2D, 
    data = NHANES_20172018_design_d1d2_HEI2020,  
    nest = TRUE)
# summarize the weighted results
tbl_svysummary(
    data=NHANES_design_1718_d1d2,
    statistic = list(all_categorical() ~ "{n_unweighted} ({p}%)", all_continuous() ~ "{mean} ({mean.std.error})")
    )| Characteristic | N = 316,082,0731 | 
|---|---|
| Respondent sequence number | 98,308 (64) | 
| Age in years at screening | 39 (1) | 
| HEI2020_ALL | 50 (1) | 
| HEI2020_TOTALFRT | 2.10 (0.08) | 
| HEI2020_FRT | 2.12 (0.09) | 
| HEI2020_VEG | 2.78 (0.05) | 
| HEI2020_GREENNBEAN | 1.42 (0.06) | 
| HEI2020_TOTALPRO | 4.09 (0.03) | 
| HEI2020_SEAPLANTPRO | 2.19 (0.06) | 
| HEI2020_WHOLEGRAIN | 2.60 (0.11) | 
| HEI2020_DAIRY | 5.15 (0.08) | 
| HEI2020_FATTYACID | 4.72 (0.08) | 
| HEI2020_REFINEDGRAIN | 5.89 (0.06) | 
| HEI2020_SODIUM | 4.61 (0.07) | 
| HEI2020_ADDEDSUGAR | 6.92 (0.10) | 
| HEI2020_SATFAT | 5.31 (0.08) | 
| Masked variance pseudo-PSU | |
| 1 | 3,124 (50%) | 
| 2 | 3,191 (50%) | 
| Masked variance pseudo-stratum | 141.0 (0.2) | 
| Dietary two-day sample weight | 141,577 (9,356) | 
| 1 Mean (SE); n (unweighted) (%) | |
# the sequence of DEMO, FPED, NUTRIENT data entry do not matter if you use "DEMO_PATH", "FPED_PATH2", "NUTRIENT_PATH2" to specify the data inputCalculating DI-GM for NHANES (after 2005)
Calculating dietary index is just the first step. Please include complex survey design when analzying NHANES data as shown above.
# Use the NHANES example data in 2017-2018 using the first day 24-hour recall data
library(dietaryindex)
data("NHANES_20172018")
DI_GM_NHANES_FPED(FPED_IND_PATH = NHANES_20172018$FPED_IND, NUTRIENT_IND_PATH = NHANES_20172018$NUTRIENT_IND)## The default food codes for avocado from 17-18 FNDDS file is used.
## The default food codes for broccoli from 17-18 FNDDS file is used.
## The default food codes for chickpea from 17-18 FNDDS file is used.
## The default food codes for coffee from 17-18 FNDDS file is used.
## The default food codes for cranberry from 17-18 FNDDS file is used.
## The default food codes for fermented dairy from 17-18 FNDDS file is used.
## The default food codes for green tea from 17-18 FNDDS file is used.
## The default food codes for soybean from 17-18 FNDDS file is used.
## Calculating DI_GM index using day 1 data...
## Reminder: this DI_GM index uses sex-specific medians to rank participants' food/drink serving sizes and then calculate DI_GM component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 7,483 × 17
##     SEQN RIAGENDR DI_GM_TOTAL DI_GM_AVOCADO DI_GM_BROCCOLI DI_GM_CHICKPEA
##    <dbl>    <dbl>       <dbl>         <dbl>          <dbl>          <dbl>
##  1 93704        1           4             0              0              0
##  2 93705        2           5             0              0              0
##  3 93706        1           3             0              0              0
##  4 93707        1           3             0              0              0
##  5 93708        2           5             0              0              0
##  6 93710        2           5             0              1              0
##  7 93711        1           6             0              0              0
##  8 93712        1           4             0              0              0
##  9 93713        1           4             0              0              0
## 10 93714        2           5             0              0              0
## # ℹ 7,473 more rows
## # ℹ 11 more variables: DI_GM_COFFEE <dbl>, DI_GM_CRANBERRY <dbl>,
## #   DI_GM_FERMENTED_DAIRY <dbl>, DI_GM_FIBER <dbl>, DI_GM_GREEN_TEA <dbl>,
## #   DI_GM_SOYBEAN <dbl>, DI_GM_WHOLE_GRAIN <dbl>,
## #   DI_GM_TOTAL_FAT_PERCENTAGE <dbl>, DI_GM_PROCESSED_MEAT <dbl>,
## #   DI_GM_RED_MEAT <dbl>, DI_GM_REFINED_GRAIN <dbl>
# Use the NHANES example data in 2017-2018 using the second day 24-hour recall data
library(dietaryindex)
data("NHANES_20172018")
DI_GM_NHANES_FPED(FPED_IND_PATH2 = NHANES_20172018$FPED_IND2, NUTRIENT_IND_PATH2 = NHANES_20172018$NUTRIENT_IND2)## The default food codes for avocado from 17-18 FNDDS file is used.
## The default food codes for broccoli from 17-18 FNDDS file is used.
## The default food codes for chickpea from 17-18 FNDDS file is used.
## The default food codes for coffee from 17-18 FNDDS file is used.
## The default food codes for cranberry from 17-18 FNDDS file is used.
## The default food codes for fermented dairy from 17-18 FNDDS file is used.
## The default food codes for green tea from 17-18 FNDDS file is used.
## The default food codes for soybean from 17-18 FNDDS file is used.
## Calculating DI_GM index using day 2 data...
## Reminder: this DI_GM index uses sex-specific medians to rank participants' food/drink serving sizes and then calculate DI_GM component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 6,500 × 17
##     SEQN RIAGENDR DI_GM_TOTAL DI_GM_AVOCADO DI_GM_BROCCOLI DI_GM_CHICKPEA
##    <dbl>    <dbl>       <dbl>         <dbl>          <dbl>          <dbl>
##  1 93704        1           4             0              0              0
##  2 93705        2           4             0              0              0
##  3 93707        1           3             0              0              0
##  4 93708        2           3             0              0              0
##  5 93710        2           2             0              0              0
##  6 93711        1           4             0              0              0
##  7 93712        1           3             0              0              0
##  8 93713        1           6             0              0              0
##  9 93714        2           3             0              0              0
## 10 93715        1           3             0              0              0
## # ℹ 6,490 more rows
## # ℹ 11 more variables: DI_GM_COFFEE <dbl>, DI_GM_CRANBERRY <dbl>,
## #   DI_GM_FERMENTED_DAIRY <dbl>, DI_GM_FIBER <dbl>, DI_GM_GREEN_TEA <dbl>,
## #   DI_GM_SOYBEAN <dbl>, DI_GM_WHOLE_GRAIN <dbl>,
## #   DI_GM_TOTAL_FAT_PERCENTAGE <dbl>, DI_GM_PROCESSED_MEAT <dbl>,
## #   DI_GM_RED_MEAT <dbl>, DI_GM_REFINED_GRAIN <dbl>
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
library(dietaryindex)
data("NHANES_20172018")
DI_GM_NHANES_FPED(FPED_IND_PATH = NHANES_20172018$FPED_IND, NUTRIENT_IND_PATH = NHANES_20172018$NUTRIENT_IND, FPED_IND_PATH2 = NHANES_20172018$FPED_IND2, NUTRIENT_IND_PATH2 = NHANES_20172018$NUTRIENT_IND2)## The default food codes for avocado from 17-18 FNDDS file is used.
## The default food codes for broccoli from 17-18 FNDDS file is used.
## The default food codes for chickpea from 17-18 FNDDS file is used.
## The default food codes for coffee from 17-18 FNDDS file is used.
## The default food codes for cranberry from 17-18 FNDDS file is used.
## The default food codes for fermented dairy from 17-18 FNDDS file is used.
## The default food codes for green tea from 17-18 FNDDS file is used.
## The default food codes for soybean from 17-18 FNDDS file is used.
## Calculating DI_GM index using day 1 data...
## Reminder: this DI_GM index uses sex-specific medians to rank participants' food/drink serving sizes and then calculate DI_GM component scores, which may generate results that are specific to your study population but not comparable to other populations.
## Calculating DI_GM index using day 2 data...
## Reminder: this DI_GM index uses sex-specific medians to rank participants' food/drink serving sizes and then calculate DI_GM component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 6,488 × 17
##     SEQN RIAGENDR DI_GM_TOTAL DI_GM_AVOCADO DI_GM_BROCCOLI DI_GM_CHICKPEA
##    <dbl>    <dbl>       <dbl>         <dbl>          <dbl>          <dbl>
##  1 93704        1         4               0            0                0
##  2 93705        2         4.5             0            0                0
##  3 93707        1         3               0            0                0
##  4 93708        2         4               0            0                0
##  5 93710        2         3.5             0            0.5              0
##  6 93711        1         5               0            0                0
##  7 93712        1         3.5             0            0                0
##  8 93713        1         5               0            0                0
##  9 93714        2         4               0            0                0
## 10 93715        1         3               0            0                0
## # ℹ 6,478 more rows
## # ℹ 11 more variables: DI_GM_COFFEE <dbl>, DI_GM_CRANBERRY <dbl>,
## #   DI_GM_FERMENTED_DAIRY <dbl>, DI_GM_FIBER <dbl>, DI_GM_GREEN_TEA <dbl>,
## #   DI_GM_SOYBEAN <dbl>, DI_GM_WHOLE_GRAIN <dbl>,
## #   DI_GM_TOTAL_FAT_PERCENTAGE <dbl>, DI_GM_PROCESSED_MEAT <dbl>,
## #   DI_GM_RED_MEAT <dbl>, DI_GM_REFINED_GRAIN <dbl>
# Use the NHANES example data in 2003-2004 using the first day 24-hour recall data
library(dietaryindex)
data("NHANES_20032004")
DI_GM_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO)## The default food codes for avocado from 17-18 FNDDS file is used.
## The default food codes for broccoli from 17-18 FNDDS file is used.
## The default food codes for chickpea from 17-18 FNDDS file is used.
## The default food codes for coffee from 17-18 FNDDS file is used.
## The default food codes for cranberry from 17-18 FNDDS file is used.
## The default food codes for fermented dairy from 17-18 FNDDS file is used.
## The default food codes for green tea from 17-18 FNDDS file is used.
## The default food codes for soybean from 17-18 FNDDS file is used.
## Calculating the DI_GM total and component scores for the first day data...
## Reminder: this DI_GM index uses sex-specific medians to rank participants' food/drink serving sizes and then calculate DI_GM component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 8,272 × 17
##     SEQN RIAGENDR DI_GM_TOTAL DI_GM_AVOCADO DI_GM_BROCCOLI DI_GM_CHICKPEA
##    <dbl>    <dbl>       <dbl>         <dbl>          <dbl>          <dbl>
##  1 21005        1           4             0              0              0
##  2 21006        2           3             0              0              0
##  3 21007        2           2             0              0              0
##  4 21008        1           1             0              0              0
##  5 21009        1           5             0              0              0
##  6 21010        2           4             0              0              0
##  7 21012        1           3             0              0              0
##  8 21013        2           2             0              0              0
##  9 21014        1           5             0              0              0
## 10 21015        1           7             0              0              0
## # ℹ 8,262 more rows
## # ℹ 11 more variables: DI_GM_COFFEE <dbl>, DI_GM_CRANBERRY <dbl>,
## #   DI_GM_FERMENTED_DAIRY <dbl>, DI_GM_FIBER <dbl>, DI_GM_GREEN_TEA <dbl>,
## #   DI_GM_SOYBEAN <dbl>, DI_GM_WHOLE_GRAIN <dbl>,
## #   DI_GM_TOTAL_FAT_PERCENTAGE <dbl>, DI_GM_PROCESSED_MEAT <dbl>,
## #   DI_GM_RED_MEAT <dbl>, DI_GM_REFINED_GRAIN <dbl>
# Use the NHANES example data in 2003-2004 using the second day 24-hour recall data
library(dietaryindex)
data("NHANES_20032004")
DI_GM_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)## The default food codes for avocado from 17-18 FNDDS file is used.
## The default food codes for broccoli from 17-18 FNDDS file is used.
## The default food codes for chickpea from 17-18 FNDDS file is used.
## The default food codes for coffee from 17-18 FNDDS file is used.
## The default food codes for cranberry from 17-18 FNDDS file is used.
## The default food codes for fermented dairy from 17-18 FNDDS file is used.
## The default food codes for green tea from 17-18 FNDDS file is used.
## The default food codes for soybean from 17-18 FNDDS file is used.
## Calculating the DI_GM total and component scores for the second day data...
## Reminder: this DI_GM index uses sex-specific medians to rank participants' food/drink serving sizes and then calculate DI_GM component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 7,648 × 17
##     SEQN RIAGENDR DI_GM_TOTAL DI_GM_AVOCADO DI_GM_BROCCOLI DI_GM_CHICKPEA
##    <dbl>    <dbl>       <dbl>         <dbl>          <dbl>          <dbl>
##  1 21005        1           2             0              0              0
##  2 21006        2           3             0              0              0
##  3 21007        2           2             0              0              0
##  4 21008        1           3             0              0              0
##  5 21009        1           4             0              0              0
##  6 21010        2           5             0              0              0
##  7 21012        1           3             0              0              0
##  8 21013        2           3             0              0              0
##  9 21014        1           4             0              0              0
## 10 21015        1           6             0              0              0
## # ℹ 7,638 more rows
## # ℹ 11 more variables: DI_GM_COFFEE <dbl>, DI_GM_CRANBERRY <dbl>,
## #   DI_GM_FERMENTED_DAIRY <dbl>, DI_GM_FIBER <dbl>, DI_GM_GREEN_TEA <dbl>,
## #   DI_GM_SOYBEAN <dbl>, DI_GM_WHOLE_GRAIN <dbl>,
## #   DI_GM_TOTAL_FAT_PERCENTAGE <dbl>, DI_GM_PROCESSED_MEAT <dbl>,
## #   DI_GM_RED_MEAT <dbl>, DI_GM_REFINED_GRAIN <dbl>
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
library(dietaryindex)
data("NHANES_20032004")
DI_GM_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)## The default food codes for avocado from 17-18 FNDDS file is used.
## The default food codes for broccoli from 17-18 FNDDS file is used.
## The default food codes for chickpea from 17-18 FNDDS file is used.
## The default food codes for coffee from 17-18 FNDDS file is used.
## The default food codes for cranberry from 17-18 FNDDS file is used.
## The default food codes for fermented dairy from 17-18 FNDDS file is used.
## The default food codes for green tea from 17-18 FNDDS file is used.
## The default food codes for soybean from 17-18 FNDDS file is used.
## Calculating the DI_GM total and component scores for the first day data...
## Reminder: this DI_GM index uses sex-specific medians to rank participants' food/drink serving sizes and then calculate DI_GM component scores, which may generate results that are specific to your study population but not comparable to other populations.
## Calculating the DI_GM total and component scores for the second day data...
## Reminder: this DI_GM index uses sex-specific medians to rank participants' food/drink serving sizes and then calculate DI_GM component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 7,647 × 17
##     SEQN RIAGENDR DI_GM_TOTAL DI_GM_AVOCADO DI_GM_BROCCOLI DI_GM_CHICKPEA
##    <dbl>    <dbl>       <dbl>         <dbl>          <dbl>          <dbl>
##  1 21005        1         3               0              0              0
##  2 21006        2         3               0              0              0
##  3 21007        2         2               0              0              0
##  4 21008        1         2               0              0              0
##  5 21009        1         4.5             0              0              0
##  6 21010        2         4.5             0              0              0
##  7 21012        1         3               0              0              0
##  8 21013        2         2.5             0              0              0
##  9 21014        1         4.5             0              0              0
## 10 21015        1         6.5             0              0              0
## # ℹ 7,637 more rows
## # ℹ 11 more variables: DI_GM_COFFEE <dbl>, DI_GM_CRANBERRY <dbl>,
## #   DI_GM_FERMENTED_DAIRY <dbl>, DI_GM_FIBER <dbl>, DI_GM_GREEN_TEA <dbl>,
## #   DI_GM_SOYBEAN <dbl>, DI_GM_WHOLE_GRAIN <dbl>,
## #   DI_GM_TOTAL_FAT_PERCENTAGE <dbl>, DI_GM_PROCESSED_MEAT <dbl>,
## #   DI_GM_RED_MEAT <dbl>, DI_GM_REFINED_GRAIN <dbl>
Calculating DII for NHANES_FPED (after 2005)
# This function was improved by Zhe Xu (zxu@cmu.edu.cn) to include the other DII ingredients, including Garlic, Ginger, Onion, Pepper, Thyme/oregano, and other Flavonoids, in the calculation.
FPED_PATH = "/Users/james/Desktop/fped_dr1tot_1718.sas7bdat"
NUTRIENT_PATH = "/Users/james/Desktop/DR1TOT_J.XPT"
DEMO_PATH = "/Users/james/Desktop/DEMO_J.XPT"
DII_NHANES_FPED(FPED_PATH, NUTRIENT_PATH, DEMO_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
library(dietaryindex)
data("NHANES_20172018")
data("DII_OTHER_INGREDIENTS_day1")
data("DII_OTHER_INGREDIENTS_day2")
DII_NHANES_FPED(FPED_PATH = NHANES_20172018$FPED, NUTRIENT_PATH = NHANES_20172018$NUTRIENT, DEMO_PATH = NHANES_20172018$DEMO, FPED_PATH2 = NHANES_20172018$FPED2, NUTRIENT_PATH2 = NHANES_20172018$NUTRIENT2, OTHER_INGREDIENTS1 = DII_OTHER_INGREDIENTS_day1, OTHER_INGREDIENTS2 = DII_OTHER_INGREDIENTS_day2)## VITD is included in the calculation in the first day of NHANES data.
## VITD is included in the calculation in the second day of NHANES data.
## Reminder: This function does not use all the original DII variables. Eugenol, trans fat, turmeric, Green/black tea, Rosemary are not included.
## Day 1 and Day 2 data are used for the calculation.
## Note: Flavonoid data is only available for NHANES 2007-2010 and 2017-2018.
## # A tibble: 6,174 × 42
##     SEQN DII_ALL DII_NOETOH    ALCOHOL  VITB12    VITB6 BCAROTENE CAFFEINE
##    <dbl>   <dbl>      <dbl>      <dbl>   <dbl>    <dbl>     <dbl>    <dbl>
##  1 93704   5.81       5.53   0.278     -0.0263  0.0738      0.560   0.0849
##  2 93705   5.35       5.07   0.278     -0.0942  0.305       0.223   0.0833
##  3 93707   6.31       6.03   0.278     -0.0427  0.0267      0.564   0.0849
##  4 93708   5.81       5.53   0.278     -0.0721  0.216       0.451   0.0849
##  5 93711  -0.139     -0.139 -0.0000238 -0.0578 -0.185       0.223   0.0828
##  6 93712   2.90       2.62   0.278      0.0207 -0.329       0.534   0.0845
##  7 93713   2.13       1.85   0.278     -0.0477 -0.140       0.274   0.0826
##  8 93714   5.95       5.67   0.278     -0.0601  0.00904     0.561   0.0846
##  9 93715   7.07       6.79   0.278     -0.0745  0.309       0.562   0.0824
## 10 93716   0.662      0.384  0.278      0.0245 -0.357      -0.237   0.0844
## # ℹ 6,164 more rows
## # ℹ 34 more variables: CARB <dbl>, CHOLES <dbl>, KCAL <dbl>, TOTALFAT <dbl>,
## #   FIBER <dbl>, FOLICACID <dbl>, IRON <dbl>, MG <dbl>, MUFA <dbl>,
## #   NIACIN <dbl>, N3FAT <dbl>, N6FAT <dbl>, PROTEIN <dbl>, PUFA <dbl>,
## #   RIBOFLAVIN <dbl>, SATFAT <dbl>, SE <dbl>, THIAMIN <dbl>, VITA <dbl>,
## #   VITC <dbl>, VITE <dbl>, ZN <dbl>, VITD <dbl>, GARLIC <dbl>, GINGER <dbl>,
## #   ONION <dbl>, FLA3OL <dbl>, FLAVONES <dbl>, FLAVONOLS <dbl>, …
Calculating DII for NHANES_MPED (1999-2004)
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
library(dietaryindex)
data("NHANES_20032004")
data("DII_OTHER_INGREDIENTS_day1")
data("DII_OTHER_INGREDIENTS_day2")
DII_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2, OTHER_INGREDIENTS1 = DII_OTHER_INGREDIENTS_day1, OTHER_INGREDIENTS2 = DII_OTHER_INGREDIENTS_day2)## VITD is not included in the calculation in the first day of NHANES data.
## It is normal to see warnings if you do not provide all arguments using DII. The algorithm will only count the arguments you enter to calculate the DII. All warnings are about the first column you don't use. For example, if you only entered alcohol, vitamin b12, and vitamin b6, all warnings would remind you that bcarotene is not found.
## VITD is not included in the calculation in the first day of NHANES data.
## It is normal to see warnings if you do not provide all arguments using DII. The algorithm will only count the arguments you enter to calculate the DII. All warnings are about the first column you don't use. For example, if you only entered alcohol, vitamin b12, and vitamin b6, all warnings would remind you that bcarotene is not found.
## Reminder: This function does not use all the original DII variables. Eugenol, trans fat, turmeric, Green/black tea, Rosemary are not included.
## Day 1 and Day 2 data are used for the calculation.
## Note: Flavonoid data is only available for NHANES 2007-2010 and 2017-2018.
## # A tibble: 7,647 × 48
##     SEQN DII_ALL DII_NOETOH ALCOHOL_DII VITB12_DII VITB6_DII BCAROTENE_DII
##    <dbl>   <dbl>      <dbl>       <dbl>      <dbl>     <dbl>         <dbl>
##  1 21005    2.68      2.40        0.278    -0.0305   -0.107          0.555
##  2 21006    4.76      4.48        0.278    -0.0868    0.224          0.563
##  3 21007    4.82      4.54        0.278    -0.0904    0.277          0.540
##  4 21008    4.28      4.00        0.278    -0.0383    0.150          0.537
##  5 21009    1.21      0.937       0.278     0.0337   -0.293          0.528
##  6 21010    3.34      3.61       -0.274    -0.0499    0.0303         0.563
##  7 21012    3.23      3.51       -0.278     0.0360   -0.194          0.549
##  8 21013    4.57      4.29        0.278    -0.0565    0.150          0.559
##  9 21014    1.93      1.65        0.278     0.0706   -0.204          0.524
## 10 21015    2.39      2.11        0.278    -0.0551   -0.0627         0.134
## # ℹ 7,637 more rows
## # ℹ 41 more variables: CAFFEINE_DII <dbl>, CARB_DII <dbl>, CHOLES_DII <dbl>,
## #   KCAL_DII <dbl>, EUGENOL_DII <dbl>, TOTALFAT_DII <dbl>, FIBER_DII <dbl>,
## #   FOLICACID_DII <dbl>, GARLIC_DII <dbl>, GINGER_DII <dbl>, IRON_DII <dbl>,
## #   MG_DII <dbl>, MUFA_DII <dbl>, NIACIN_DII <dbl>, N3FAT_DII <dbl>,
## #   N6FAT_DII <dbl>, ONION_DII <dbl>, PROTEIN_DII <dbl>, PUFA_DII <dbl>,
## #   RIBOFLAVIN_DII <dbl>, SAFFRON_DII <dbl>, SATFAT_DII <dbl>, SE_DII <dbl>, …
Calculating HEI2020 for NHANES_MPED (before 2005)
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
data("NHANES_20032004")
HEI2020_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)## # A tibble: 7,915 × 17
##     SEQN TOTALKCAL_HEI2020 RIDAGEYR HEI2020_ALL HEI2020_TOTALFRT HEI2020_FRT
##    <dbl>             <dbl>    <dbl>       <dbl>            <dbl>       <dbl>
##  1 21005             2598.       19        39.0            0.489       0    
##  2 21006             1198        16        37.8            0.738       0    
##  3 21007              943        14        43.0            3.97        1.03 
##  4 21008             2236.       17        28.4            0           0    
##  5 21009             4540.       55        43.4            0.182       0.311
##  6 21010             1834.       52        53.7            0.406       0.812
##  7 21012             2786        63        37.5            0           0    
##  8 21013             1420.       13        44.6            2.44        2.5  
##  9 21014             2079         3        49.0            2.5         0.880
## 10 21015             1638.       83        66.8            3.37        4.87 
## # ℹ 7,905 more rows
## # ℹ 11 more variables: HEI2020_VEG <dbl>, HEI2020_GREENNBEAN <dbl>,
## #   HEI2020_TOTALPRO <dbl>, HEI2020_SEAPLANTPRO <dbl>,
## #   HEI2020_WHOLEGRAIN <dbl>, HEI2020_DAIRY <dbl>, HEI2020_FATTYACID <dbl>,
## #   HEI2020_REFINEDGRAIN <dbl>, HEI2020_SODIUM <dbl>, HEI2020_ADDEDSUGAR <dbl>,
## #   HEI2020_SATFAT <dbl>
Calculating HEI2015 for NHANES_FPED (after 2005)
# Using the first day nutrition data
FPED_PATH_1 = "/Users/james/Desktop/fped_dr1tot_1718.sas7bdat"
NUTRIENT_PATH_1 = "/Users/james/Desktop/DR1TOT_J.XPT"
DEMO_PATH_1 = "/Users/james/Desktop/DEMO_J.XPT"
HEI2015_NHANES_FPED(FPED_PATH=FPED_PATH_1, NUTRIENT_PATH=NUTRIENT_PATH_1, DEMO_PATH=DEMO_PATH_1)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
HEI2015_NHANES_FPED(FPED_PATH=NHANES_20172018$FPED, NUTRIENT_PATH=NHANES_20172018$NUTRIENT, DEMO_PATH=NHANES_20172018$DEMO, FPED_PATH2=NHANES_20172018$FPED2, NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)## # A tibble: 6,177 × 15
##     SEQN HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT HEI2015_VEG HEI2015_GREENNBEAN
##    <dbl>       <dbl>            <dbl>       <dbl>       <dbl>              <dbl>
##  1 93704        61.7           5            2.5         1.55                0   
##  2 93705        43.0           0.0759       0           3.46                4.83
##  3 93707        38.9           0            0           2.09                0   
##  4 93708        49.9           1.22         2.45        3.20                0   
##  5 93711        69.0           3.57         2.85        3.75                4.27
##  6 93712        46.4           2.5          2.5         2.42                2.5 
##  7 93713        55.4           4.84         5           3.47                1.13
##  8 93714        36.1           0.321        0.617       1.85                0   
##  9 93715        30.7           0.777        1.55        0.614               0   
## 10 93716        65.0           5            5           4.03                4.73
## # ℹ 6,167 more rows
## # ℹ 9 more variables: HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## #   HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## #   HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## #   HEI2015_SATFAT <dbl>
Calculating HEI2015 for NHANES_MPED (betweeen 1999-2004)
data("NHANES_20032004")
HEI2015_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)## # A tibble: 7,650 × 16
##     SEQN TOTALKCAL_HEI2015 HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT HEI2015_VEG
##    <dbl>             <dbl>       <dbl>            <dbl>       <dbl>       <dbl>
##  1 21005             2598.        53.7            0.489       0            2.28
##  2 21006             1198         46.3            0.738       0            3.95
##  3 21007              943         42.5            3.97        1.03         3.15
##  4 21008             2236.        45.8            0           0            2.37
##  5 21009             4540.        59.3            0.182       0.311        3.01
##  6 21010             1834.        59.4            0.406       0.812        4.10
##  7 21012             2786         54.0            0           0            2.89
##  8 21013             1420.        50.6            2.44        2.5          2.52
##  9 21014             2079         63.4            2.5         0.880        4.25
## 10 21015             1638.        73.7            3.37        4.87         3.42
## # ℹ 7,640 more rows
## # ℹ 10 more variables: HEI2015_GREENNBEAN <dbl>, HEI2015_TOTALPRO <dbl>,
## #   HEI2015_SEAPLANTPRO <dbl>, HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>,
## #   HEI2015_FATTYACID <dbl>, HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>,
## #   HEI2015_ADDEDSUGAR <dbl>, HEI2015_SATFAT <dbl>
Calculating AHEI for NHANES_FPED (after 2005)
FPED_IND_PATH = "/Users/james/Desktop/data/fped_dr1iff.sas7bdat"
NUTRIENT_IND_PATH = "/Users/james/Desktop/data/DR1IFF_J"
AHEI_NHANES_FPED(FPED_IND_PATH, NUTRIENT_IND_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
AHEI_NHANES_FPED(NHANES_20172018$FPED_IND, NHANES_20172018$NUTRIENT_IND, NHANES_20172018$FPED_IND2, NHANES_20172018$NUTRIENT_IND2)## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Trans fat is not avaiable for NHANES, so it is not included in the AHEI score.
## # A tibble: 6,488 × 13
##     SEQN AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN AHEI_NUTSLEG
##    <dbl>    <dbl>       <dbl>    <dbl>    <dbl>       <dbl>        <dbl>
##  1 93704     43.8        42.6     0.22    1.34        1.13          0   
##  2 93705     39.9        38.6     3.05    0           0            10   
##  3 93707     33.6        32.4     1.42    0           6.42          0.35
##  4 93708     49.1        47.9     5.18    0.612       0.643         5   
##  5 93710     44.2        42.9     0.43    2.11        2.83          1.25
##  6 93711     53.3        48.5     6.75    1.62        3.97         10   
##  7 93712     26.4        25.2     3.5     2.28        2.69          5   
##  8 93713     38.8        37.6     6.08    4.61        0.961         1.85
##  9 93714     34.8        33.6     0.04    0.25        4.99          0   
## 10 93715     20.1        18.9     0.44    0.4         0             0   
## # ℹ 6,478 more rows
## # ℹ 6 more variables: AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>, AHEI_SSB_FRTJ <dbl>,
## #   AHEI_REDPROC_MEAT <dbl>, AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating AHEI for NHANES_MPED (1999-2004)
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
data("NHANES_20032004")
AHEI_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)## [1] "Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used."
## # A tibble: 7,647 × 13
##     SEQN AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN AHEI_NUTSLEG
##    <dbl>    <dbl>       <dbl>    <dbl>    <dbl>       <dbl>        <dbl>
##  1 21005     25.9        23.4    1.79     0          5            2.07  
##  2 21006     24.4        21.9    0.761    0          1.21         1.48  
##  3 21007     26.0        23.5    3.09     0.154      0            0     
##  4 21008     21.3        18.8    4.71     0          2.31         0.0363
##  5 21009     37.1        34.6    3.29     0.277      0.0156       0.458 
##  6 21010     30.8        28.3    1.27     0.353      0            5.59  
##  7 21012     23.5        20.1    2.60     0          1.44         5.06  
##  8 21013     20.9        18.4    1.30     0.653      0            0.0617
##  9 21014     41.5        39.0    4.83     0.445      1.06         5.03  
## 10 21015     46.3        43.8    3.04     2.11       3.38         5.03  
## # ℹ 7,637 more rows
## # ℹ 6 more variables: AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>, AHEI_SSB_FRTJ <dbl>,
## #   AHEI_REDPROC_MEAT <dbl>, AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating aMED for NHANES_FPED (after 2005)
FPED_PATH = "/Users/james/Desktop/fped_dr1tot_1718.sas7bdat"
NUTRIENT_PATH = "/Users/james/Desktop/DR1TOT_J.XPT"
DEMO_PATH = "/Users/james/Desktop/DEMO_J.XPT"
MED_NHANES_FPED(FPED_PATH, NUTRIENT_PATH, DEMO_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
MED_NHANES_FPED(FPED_PATH=NHANES_20172018$FPED, NUTRIENT_PATH=NHANES_20172018$NUTRIENT, DEMO_PATH=NHANES_20172018$DEMO, FPED_PATH2=NHANES_20172018$FPED2, NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 6,174 × 12
##     SEQN MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES MED_NUTS
##    <dbl>   <dbl>      <dbl>   <dbl>   <dbl>      <dbl>       <dbl>    <dbl>
##  1 93704     3.5        3.5     1       0          0.5         0        0  
##  2 93705     3.5        3.5     0       0.5        0           1        0.5
##  3 93707     2.5        2.5     0       0.5        1           0.5      0  
##  4 93708     3.5        3.5     0.5     0.5        0.5         0        0.5
##  5 93711     5.5        5.5     1       1          0.5         1        1  
##  6 93712     3          3       0.5     1          0.5         0.5      0  
##  7 93713     3.5        3.5     1       1          0.5         0.5      0  
##  8 93714     1.5        1.5     0       0          0.5         0        0  
##  9 93715     0.5        0.5     0       0          0           0        0  
## 10 93716     6          6       1       1          0.5         1        1  
## # ℹ 6,164 more rows
## # ℹ 4 more variables: MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## #   MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating aMED for NHANES_MPED (1999-2004)
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
data("NHANES_20032004")
MED_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 7,647 × 12
##     SEQN MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES MED_NUTS
##    <dbl>   <dbl>      <dbl>   <dbl>   <dbl>      <dbl>       <dbl>    <dbl>
##  1 21005     2          2       0       0.5        0.5         0        0.5
##  2 21006     3.5        3.5     0       0          0.5         0.5      0.5
##  3 21007     2.5        2.5     0       0.5        0           0        0  
##  4 21008     3.5        3.5     0       1          0.5         1        0  
##  5 21009     4          4       0       0.5        0.5         0.5      0  
##  6 21010     2          1.5     0       0          0           1        0  
##  7 21012     3          3       0       0.5        0.5         1        0  
##  8 21013     2.5        2.5     0       0          0           0.5      0.5
##  9 21014     5          5       0.5     1          0.5         1        0.5
## 10 21015     4.5        4.5     0.5     0.5        1           1        0.5
## # ℹ 7,637 more rows
## # ℹ 4 more variables: MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## #   MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating MEDI for NHANES_FPED (after 2005)
FPED_IND_PATH = "/Users/james/Desktop/data/fped_dr1iff.sas7bdat"
NUTRIENT_IND_PATH = "/Users/james/Desktop/data/DR1IFF_J"
MEDI_NHANES_FPED(FPED_IND_PATH, NUTRIENT_IND_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
MEDI_NHANES_FPED(FPED_IND_PATH=NHANES_20172018$FPED_IND, NUTRIENT_IND_PATH=NHANES_20172018$NUTRIENT_IND, FPED_IND_PATH2=NHANES_20172018$FPED_IND2, NUTRIENT_IND_PATH2=NHANES_20172018$NUTRIENT_IND2)## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no SWEETS code is provided, the default SSB code from 17-18 FNDDS file is used
## Since no FAT_OIL code is provided, the default FAT_OIL code from 17-18 FNDDS file is used
## Since no OLIVE_OIL code is provided, the default OLIVE_OIL code from 17-18 FNDDS file is used
## # A tibble: 6,488 × 14
##     SEQN MEDI_ALL MEDI_NOETOH MEDI_OLIVE_OIL MEDI_FRT MEDI_VEG MEDI_LEGUMES
##    <dbl>    <dbl>       <dbl>          <dbl>    <dbl>    <dbl>        <dbl>
##  1 93704      3           3                0        0      0            0  
##  2 93705      3.5         3.5              0        0      0            1  
##  3 93707      2           2                0        0      0            0  
##  4 93708      3.5         3.5              0        0      0.5          0  
##  5 93710      3           3                0        0      0            0  
##  6 93711      5           4.5              0        0      0.5          1  
##  7 93712      3           3                0        0      0            0.5
##  8 93713      2.5         2.5              0        0      0.5          0  
##  9 93714      3           3                0        0      0            0  
## 10 93715      3           3                0        0      0            0  
## # ℹ 6,478 more rows
## # ℹ 7 more variables: MEDI_NUTS <dbl>, MEDI_FISH <dbl>, MEDI_ALCOHOL <dbl>,
## #   MEDI_SSB <dbl>, MEDI_SWEETS <dbl>, MEDI_DISCRET_FAT <dbl>,
## #   MEDI_REDPROC_MEAT <dbl>
Calculating MEDI for NHANES_MPED (1999-2004)
# Use the NHANES example data in 2003-2004 using the first day + second day nutrition data
data("NHANES_20032004")
MEDI_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no SWEETS code is provided, the default SSB code from 17-18 FNDDS file is used
## Since no FAT_OIL code is provided, the default FAT_OIL code from 17-18 FNDDS file is used
## Since no OLIVE_OIL code is provided, the default OLIVE_OIL code from 17-18 FNDDS file is used
## # A tibble: 7,647 × 14
##     SEQN MEDI_ALL MEDI_NOETOH MEDI_OLIVE_OIL MEDI_FRT MEDI_VEG MEDI_LEGUMES
##    <dbl>    <dbl>       <dbl>          <dbl>    <dbl>    <dbl>        <dbl>
##  1 21005      1.5         1.5              0        0        0          0  
##  2 21006      3.5         3.5              0        0        0          0  
##  3 21007      2           2                0        0        0          0  
##  4 21008      2.5         2.5              0        0        0          0  
##  5 21009      2.5         2.5              0        0        0          0  
##  6 21010      4           3                0        0        0          0.5
##  7 21012      2.5         1.5              0        0        0          0.5
##  8 21013      1.5         1.5              0        0        0          0  
##  9 21014      4           4                0        0        0          0.5
## 10 21015      3           3                0        0        0          0  
## # ℹ 7,637 more rows
## # ℹ 7 more variables: MEDI_NUTS <dbl>, MEDI_FISH <dbl>, MEDI_ALCOHOL <dbl>,
## #   MEDI_SSB <dbl>, MEDI_SWEETS <dbl>, MEDI_DISCRET_FAT <dbl>,
## #   MEDI_REDPROC_MEAT <dbl>
Calculating DASH for NHANES_FPED (after 2005)
FPED_IND_PATH = "/Users/james/Desktop/data/fped_dr1iff.sas7bdat"
NUTRIENT_IND_PATH = "/Users/james/Desktop/data/DR1IFF_J"
DASH_NHANES_FPED(FPED_IND_PATH, NUTRIENT_IND_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
DASH_NHANES_FPED(NHANES_20172018$FPED_IND, NHANES_20172018$NUTRIENT_IND, NHANES_20172018$FPED_IND2, NHANES_20172018$NUTRIENT_IND2)## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no skim milk code is provided, the default skim milk code from 17-18 FNDDS file is used.
## Since no low-fat cheese code is provided, the default low-fat cheese code from 17-18 FNDDS file is used.
## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 6,488 × 10
##     SEQN DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN DASH_LOWF_DAIRY
##    <dbl>    <dbl>    <dbl>    <dbl>        <dbl>       <dbl>           <dbl>
##  1 93704     23.5      4.5      1            1           2.5               1
##  2 93705     18.5      1.5      3            4           1                 1
##  3 93707     20        1        2            2           4.5               1
##  4 93708     23        2        3.5          3           2                 1
##  5 93710     25.5      3.5      1.5          2.5         3.5               1
##  6 93711     31        4.5      4.5          5           3                 5
##  7 93712     18        3        3.5          3           3                 1
##  8 93713     24.5      4.5      4.5          2.5         2.5               1
##  9 93714     17.5      2.5      1            1           3                 3
## 10 93715     14.5      2        1.5          1           1                 1
## # ℹ 6,478 more rows
## # ℹ 3 more variables: DASH_SODIUM <dbl>, DASH_REDPROC_MEAT <dbl>,
## #   DASH_SSB_FRTJ <dbl>
Calculating DASH for NHANES_MPED (1999-2004)
# Use the NHANES example data in 1999-2004 using the first day + second day nutrition data
data("NHANES_20032004")
DASH_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no skim milk code is provided, the default skim milk code from 17-18 FNDDS file is used.
## Since no low-fat cheese code is provided, the default low-fat cheese code from 17-18 FNDDS file is used.
## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 7,647 × 10
##     SEQN DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN DASH_LOWF_DAIRY
##    <dbl>    <dbl>    <dbl>    <dbl>        <dbl>       <dbl>           <dbl>
##  1 21005     15.5      2        2            2.5         3                 1
##  2 21006     18        2        2            2.5         2.5               1
##  3 21007     18        3        3            1           1                 1
##  4 21008     17.5      1        3.5          2.5         3                 1
##  5 21009     19.5      2        3            2           2                 1
##  6 21010     18        1.5      2            4           1                 1
##  7 21012     17.5      1        3            4           2.5               1
##  8 21013     16        2.5      2            2           1                 1
##  9 21014     25.5      3        4            4           2.5               1
## 10 21015     27.5      3        3            4           4.5               1
## # ℹ 7,637 more rows
## # ℹ 3 more variables: DASH_SODIUM <dbl>, DASH_REDPROC_MEAT <dbl>,
## #   DASH_SSB_FRTJ <dbl>
Calculating DASHI for NHANES_FPED (after 2005)
FPED_IND_PATH = "/Users/james/Desktop/data/fped_dr1iff.sas7bdat"
NUTRIENT_IND_PATH = "/Users/james/Desktop/data/DR1IFF_J"
DASHI_NHANES_FPED(FPED_IND_PATH, NUTRIENT_IND_PATH)
# Use the NHANES example data in 2017-2018 using the first day + second day nutrition data
data("NHANES_20172018")
DASHI_NHANES_FPED(NUTRIENT_PATH = NHANES_20172018$NUTRIENT, NUTRIENT_PATH2 = NHANES_20172018$NUTRIENT2)## # A tibble: 6,488 × 11
##     SEQN DASHI_ALL DASHI_TOTAL_FAT DASHI_SAT_FAT DASHI_CHOLESTEROL DASHI_SODIUM
##    <dbl>     <dbl>           <dbl>         <dbl>             <dbl>        <dbl>
##  1 93704      4.72          0.768         0.840              0.680       0.5   
##  2 93705      2.49          0             0.472              0.5         0     
##  3 93707      1.15          0             0.0199             0           0.0844
##  4 93708      2.80          0             0.173              0.5         0     
##  5 93710      4.21          0.653         0.490              0.5         0.5   
##  6 93711      3.62          0.0920        0.490              0.312       0.5   
##  7 93712      3.89          0.844         0.640              0.629       0     
##  8 93713      3.79          0.5           0.428              0.889       0.772 
##  9 93714      1.68          0             0                  0           0     
## 10 93715      1.82          0             0.239              0.162       0.5   
## # ℹ 6,478 more rows
## # ℹ 5 more variables: DASHI_PROTEIN <dbl>, DASHI_FIBER <dbl>,
## #   DASHI_POTASSIUM <dbl>, DASHI_MAGNESIUM <dbl>, DASHI_CALCIUM <dbl>
Calculating DASHI for NHANES_FPED (1999-2004)
# Use the NHANES example data in 1999-2004 using the first day + second day nutrition data
data("NHANES_20032004")
DASHI_NHANES_MPED(MPED_PER_100_GRAM_PATH = NHANES_20032004$MPED_PER_100_GRAM, WJFRT = NHANES_20032004$WJFRT, NUTRIENT_PATH = NHANES_20032004$NUTRIENT, NUTRIENT_IND_PATH = NHANES_20032004$NUTRIENT_IND, DEMO_PATH = NHANES_20032004$DEMO, NUTRIENT_PATH2 = NHANES_20032004$NUTRIENT2, NUTRIENT_IND_PATH2 = NHANES_20032004$NUTRIENT_IND2)## # A tibble: 7,647 × 11
##     SEQN DASHI_ALL DASHI_TOTAL_FAT DASHI_SAT_FAT DASHI_CHOLESTEROL DASHI_SODIUM
##    <dbl>     <dbl>           <dbl>         <dbl>             <dbl>        <dbl>
##  1 21005      2.28           0.321         0.585             0.550        0    
##  2 21006      2.53           0.591         0.577             0.5          0    
##  3 21007      2.97           0.5           0.546             0.5          0.300
##  4 21008      1.54           0.185         0.313             0.381        0    
##  5 21009      1.73           0             0.454             0.294        0.5  
##  6 21010      4.92           0.812         0.435             0.781        1    
##  7 21012      1.30           0.113         0.388             0            0    
##  8 21013      2.94           0.410         0.614             0.968        0.672
##  9 21014      5.17           0.725         0.373             0.742        0    
## 10 21015      4.84           0.373         0.394             0.661        0.677
## # ℹ 7,637 more rows
## # ℹ 5 more variables: DASHI_PROTEIN <dbl>, DASHI_FIBER <dbl>,
## #   DASHI_POTASSIUM <dbl>, DASHI_MAGNESIUM <dbl>, DASHI_CALCIUM <dbl>
ASA24 functions
Calculating DII for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
DII_ASA24(DATA_PATH)
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## # A tibble: 21 × 32
## # Groups:   UserName [21]
##    UserName UserID DII_ALL DII_NOETOH ALCOHOL   VITB12  VITB6 BCAROTENE CAFFEINE
##       <dbl> <chr>    <dbl>      <dbl>   <dbl>    <dbl>  <dbl>     <dbl>    <dbl>
##  1        1 e6541… -0.0932     -0.371   0.278 -0.0766   0.127    -0.408   0.0848
##  2        2 dbb27…  2.93        2.65    0.278 -0.0982   0.136     0.295   0.0845
##  3        3 f0115…  1.39        1.11    0.278 -0.0185  -0.214     0.549   0.0850
##  4        4 337d8…  1.28        1.00    0.278  0.00997 -0.185     0.538   0.0850
##  5        5 998f0…  3.84        3.56    0.274 -0.0934   0.239     0.565   0.0844
##  6        6 aae33…  2.29        2.01    0.278 -0.0846  -0.359     0.554   0.0846
##  7        7 76e0f…  1.05        0.768   0.278 -0.0781  -0.206    -0.125   0.0839
##  8        8 24de9…  0.178       0.409  -0.231 -0.0608  -0.252     0.459   0.0850
##  9        9 8f61a…  0.805       0.527   0.278 -0.0908   0.134     0.564   0.0847
## 10       10 b47ab…  1.98        1.70    0.278 -0.0949   0.184     0.537   0.0845
## # ℹ 11 more rows
## # ℹ 23 more variables: CARB <dbl>, CHOLES <dbl>, KCAL <dbl>, TOTALFAT <dbl>,
## #   FIBER <dbl>, FOLICACID <dbl>, IRON <dbl>, MG <dbl>, MUFA <dbl>,
## #   NIACIN <dbl>, N3FAT <dbl>, N6FAT <dbl>, PROTEIN <dbl>, PUFA <dbl>,
## #   RIBOFLAVIN <dbl>, SATFAT <dbl>, SE <dbl>, THIAMIN <dbl>, VITA <dbl>,
## #   VITC <dbl>, VITD <dbl>, VITE <dbl>, ZN <dbl>
Calculating HEI2020 for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
# if you want to summarize all recalls into a result via average
HEI2020_ASA24(DATA_PATH, RECALL_SUMMARIZE = TRUE)
# if you want to use all individual recalls
HEI2020_ASA24(DATA_PATH, RECALL_SUMMARIZE = FALSE)
#Use the example data
data("ASA24_exp")
HEI2015_ASA24(ASA24_exp, RECALL_SUMMARIZE = TRUE)## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## # A tibble: 21 × 17
## # Groups:   UserName, UserID [21]
##    UserName UserID            TOTALKCAL HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
##       <dbl> <chr>                 <dbl>       <dbl>            <dbl>       <dbl>
##  1        1 e6541891-8a22-49…     1514.        69.8             1.26        2.45
##  2        2 dbb278b0-b589-44…      935.        52.8             5           0   
##  3        3 f0115426-e6f8-4c…     1655.        51.2             5           5   
##  4        4 337d84a7-3bff-48…     1571.        47.5             0           0   
##  5        5 998f098a-8584-49…      907.        45.2             0           0   
##  6        6 aae330db-8f22-4d…     1271.        52.9             3.78        5   
##  7        7 76e0f3e1-8e17-49…     2662.        48.4             1.51        2.23
##  8        8 24de994f-e06a-41…     2039.        69.0             2.76        5   
##  9        9 8f61ae64-6a82-4f…     1469.        70.9             5           5   
## 10       10 b47ab1b8-e62b-4b…     1636.        61.2             2.64        0   
## # ℹ 11 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## #   HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## #   HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## #   HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## #   HEI2015_SATFAT <dbl>
HEI2015_ASA24(ASA24_exp, RECALL_SUMMARIZE = FALSE)## RECALL_SUMMARIZE is FALSE, skipping summarization step...
## # A tibble: 42 × 17
##    UserName UserID            TOTALKCAL HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
##       <dbl> <chr>                 <dbl>       <dbl>            <dbl>       <dbl>
##  1        1 e6541891-8a22-49…     2019.        69.8             1.26        2.45
##  2        1 e6541891-8a22-49…     1010.        69.8             1.26        2.45
##  3        2 dbb278b0-b589-44…     1247.        52.8             5           0   
##  4        2 dbb278b0-b589-44…      623.        52.8             5           0   
##  5        3 f0115426-e6f8-4c…     2206.        51.2             5           5   
##  6        3 f0115426-e6f8-4c…     1103.        51.2             5           5   
##  7        4 337d84a7-3bff-48…     2095.        47.5             0           0   
##  8        4 337d84a7-3bff-48…     1047.        47.5             0           0   
##  9        5 998f098a-8584-49…     1209.        45.2             0           0   
## 10        5 998f098a-8584-49…      605.        45.2             0           0   
## # ℹ 32 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## #   HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## #   HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## #   HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## #   HEI2015_SATFAT <dbl>
Calculating HEI2020_toddlers for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
# if you want to summarize all recalls into a result via average
HEI2020_TODDLERS_ASA24(DATA_PATH, RECALL_SUMMARIZE = TRUE)
# if you want to use all individual recalls
HEI2020_TODDLERS_ASA24(DATA_PATH, RECALL_SUMMARIZE = FALSE)
#Use the example data
data("ASA24_exp")
HEI2020_TODDLERS_ASA24(ASA24_exp, RECALL_SUMMARIZE = TRUE)## [1] "RECALL_SUMMARIZE = TRUE, summarizing HEI2020_TODDLERS for ASA24 data by averaging over all possible recalls per person per day..."
## [1] "The results should be only used for HEI-Toddlers 2020 (age 1-2 years), not for HEI-2020 (non-toddlers, age > 2 years)."
## # A tibble: 21 × 17
## # Groups:   UserName, UserID [21]
##    UserName UserID         TOTALKCAL HEI2020_TODDLERS_ALL HEI2020_TODDLERS_TOT…¹
##       <dbl> <chr>              <dbl>                <dbl>                  <dbl>
##  1        1 e6541891-8a22…     1514.                 60.8                   1.44
##  2        2 dbb278b0-b589…      935.                 55.2                   5   
##  3        3 f0115426-e6f8…     1655.                 47.8                   5   
##  4        4 337d84a7-3bff…     1571.                 50.7                   0   
##  5        5 998f098a-8584…      907.                 39.3                   0   
##  6        6 aae330db-8f22…     1271.                 46.9                   4.32
##  7        7 76e0f3e1-8e17…     2662.                 45.4                   1.73
##  8        8 24de994f-e06a…     2039.                 70.3                   3.16
##  9        9 8f61ae64-6a82…     1469.                 69.1                   5   
## 10       10 b47ab1b8-e62b…     1636.                 59.2                   3.01
## # ℹ 11 more rows
## # ℹ abbreviated name: ¹HEI2020_TODDLERS_TOTALFRT
## # ℹ 12 more variables: HEI2020_TODDLERS_FRT <dbl>, HEI2020_TODDLERS_VEG <dbl>,
## #   HEI2020_TODDLERS_GREENNBEAN <dbl>, HEI2020_TODDLERS_TOTALPRO <dbl>,
## #   HEI2020_TODDLERS_SEAPLANTPRO <dbl>, HEI2020_TODDLERS_WHOLEGRAIN <dbl>,
## #   HEI2020_TODDLERS_DAIRY <dbl>, HEI2020_TODDLERS_FATTYACID <dbl>,
## #   HEI2020_TODDLERS_REFINEDGRAIN <dbl>, HEI2020_TODDLERS_SODIUM <dbl>, …
HEI2020_TODDLERS_ASA24(ASA24_exp, RECALL_SUMMARIZE = FALSE)## [1] "RECALL_SUMMARIZE is FALSE, skipping summarization step..."
## [1] "The results should be only used for HEI-Toddlers 2020 (age 1-2 years), not for HEI-2020 (non-toddlers, age > 2 years)."
## # A tibble: 42 × 17
##    UserName UserID         TOTALKCAL HEI2020_TODDLERS_ALL HEI2020_TODDLERS_TOT…¹
##       <dbl> <chr>              <dbl>                <dbl>                  <dbl>
##  1        1 e6541891-8a22…     2019.                 60.8                   1.44
##  2        1 e6541891-8a22…     1010.                 60.8                   1.44
##  3        2 dbb278b0-b589…     1247.                 55.2                   5   
##  4        2 dbb278b0-b589…      623.                 55.2                   5   
##  5        3 f0115426-e6f8…     2206.                 47.8                   5   
##  6        3 f0115426-e6f8…     1103.                 47.8                   5   
##  7        4 337d84a7-3bff…     2095.                 50.7                   0   
##  8        4 337d84a7-3bff…     1047.                 50.7                   0   
##  9        5 998f098a-8584…     1209.                 39.3                   0   
## 10        5 998f098a-8584…      605.                 39.3                   0   
## # ℹ 32 more rows
## # ℹ abbreviated name: ¹HEI2020_TODDLERS_TOTALFRT
## # ℹ 12 more variables: HEI2020_TODDLERS_FRT <dbl>, HEI2020_TODDLERS_VEG <dbl>,
## #   HEI2020_TODDLERS_GREENNBEAN <dbl>, HEI2020_TODDLERS_TOTALPRO <dbl>,
## #   HEI2020_TODDLERS_SEAPLANTPRO <dbl>, HEI2020_TODDLERS_WHOLEGRAIN <dbl>,
## #   HEI2020_TODDLERS_DAIRY <dbl>, HEI2020_TODDLERS_FATTYACID <dbl>,
## #   HEI2020_TODDLERS_REFINEDGRAIN <dbl>, HEI2020_TODDLERS_SODIUM <dbl>, …
Calculating HEI2015 for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
HEI2015_ASA24(DATA_PATH)
#Use the example data
data("ASA24_exp")
HEI2015_ASA24(ASA24_exp)## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## # A tibble: 21 × 17
## # Groups:   UserName, UserID [21]
##    UserName UserID            TOTALKCAL HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
##       <dbl> <chr>                 <dbl>       <dbl>            <dbl>       <dbl>
##  1        1 e6541891-8a22-49…     1514.        69.8             1.26        2.45
##  2        2 dbb278b0-b589-44…      935.        52.8             5           0   
##  3        3 f0115426-e6f8-4c…     1655.        51.2             5           5   
##  4        4 337d84a7-3bff-48…     1571.        47.5             0           0   
##  5        5 998f098a-8584-49…      907.        45.2             0           0   
##  6        6 aae330db-8f22-4d…     1271.        52.9             3.78        5   
##  7        7 76e0f3e1-8e17-49…     2662.        48.4             1.51        2.23
##  8        8 24de994f-e06a-41…     2039.        69.0             2.76        5   
##  9        9 8f61ae64-6a82-4f…     1469.        70.9             5           5   
## 10       10 b47ab1b8-e62b-4b…     1636.        61.2             2.64        0   
## # ℹ 11 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## #   HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## #   HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## #   HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## #   HEI2015_SATFAT <dbl>
Calculating aMED for ASA24
DATA_PATH = "/Users/james/Desktop/data/Totals.csv"
MED_ASA24(DATA_PATH)
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 21 × 13
## # Groups:   UserName, UserID [21]
##    UserName UserID     MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES
##       <dbl> <chr>        <dbl>      <dbl>   <dbl>   <dbl>      <dbl>       <dbl>
##  1        1 e6541891-…       7          7       1       1          1           1
##  2        2 dbb278b0-…       6          6       1       1          1           1
##  3        3 f0115426-…       5          5       1       1          1           0
##  4        4 337d84a7-…       6          6       0       1          1           1
##  5        5 998f098a-…       2          2       0       0          1           0
##  6        6 aae330db-…       4          4       1       1          0           0
##  7        7 76e0f3e1-…       5          5       1       1          1           0
##  8        8 24de994f-…       8          7       1       1          1           1
##  9        9 8f61ae64-…       6          6       1       1          1           1
## 10       10 b47ab1b8-…       6          6       1       1          1           1
## # ℹ 11 more rows
## # ℹ 5 more variables: MED_NUTS <dbl>, MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## #   MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating DASH for ASA24
DATA_PATH = "/Users/james/Desktop/data/items.csv"
DASH_ASA24(DATA_PATH)
#Use the example data
data("ASA24_exp_detailed")
DASH_ASA24(ASA24_exp_detailed)## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## Since no skim milk code is provided, the default skim milk code from 17-18 FNDDS file is used.
## Since no low-fat cheese code is provided, the default low-fat cheese code from 17-18 FNDDS file is used.
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 21 × 11
## # Groups:   UserName, UserID [21]
##    UserName UserID           DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN
##    <chr>    <chr>               <dbl>    <dbl>    <dbl>        <dbl>       <dbl>
##  1 THR01    e6541891-8a22-4…       28        5        5            5           5
##  2 THR02    dbb278b0-b589-4…       32        5        5            5           5
##  3 THR03    f0115426-e6f8-4…       28        5        5            5           5
##  4 THR04    337d84a7-3bff-4…       28        1        5            5           5
##  5 THR05    998f098a-8584-4…       16        1        1            1           5
##  6 THR06    aae330db-8f22-4…       24        5        5            1           1
##  7 THR07    76e0f3e1-8e17-4…       28        5        5            1           5
##  8 THR08    24de994f-e06a-4…       36        5        5            5           5
##  9 THR09    8f61ae64-6a82-4…       28        5        5            5           5
## 10 THR10    b47ab1b8-e62b-4…       36        5        5            5           5
## # ℹ 11 more rows
## # ℹ 4 more variables: DASH_LOWF_DAIRY <dbl>, DASH_SODIUM <dbl>,
## #   DASH_REDPROC_MEAT <dbl>, DASH_SSB_FRTJ <dbl>
Calculating AHEI for ASA24
DATA_PATH = "/Users/james/Desktop/data/items.csv"
AHEI_F_ASA24(DATA_PATH)
AHEI_M_ASA24(DATA_PATH)
#Use the example data
data("ASA24_exp_detailed")
AHEI_F_ASA24(ASA24_exp_detailed) # for participants who are all female## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## Reminder: this AHEI index is for female only. Please stratify your data first and provide female only data.
## # A tibble: 21 × 15
## # Groups:   UserName, UserID [21]
##    UserName UserID          AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN_F
##    <chr>    <chr>              <dbl>       <dbl>    <dbl>    <dbl>         <dbl>
##  1 THR01    e6541891-8a22-…     52.2        49.7    5.36     0.988         6.74 
##  2 THR02    dbb278b0-b589-…     44.9        42.4    6.94     0             0.302
##  3 THR03    f0115426-e6f8-…     39.1        36.6    9.24     2.48          1.03 
##  4 THR04    337d84a7-3bff-…     52.7        50.2    3.84     0             3.80 
##  5 THR05    998f098a-8584-…     46.1        36.7    0        0             2.06 
##  6 THR06    aae330db-8f22-…     45.1        42.6    3.16     2.56          0    
##  7 THR07    76e0f3e1-8e17-…     51.8        49.3    7.66     1.58          3.24 
##  8 THR08    24de994f-e06a-…     72.1        65.3    2.62     2.97         10    
##  9 THR09    8f61ae64-6a82-…     48.6        46.1    0.202    3.16          2.10 
## 10 THR10    b47ab1b8-e62b-…     58.6        56.1    5.27     0            10    
## # ℹ 11 more rows
## # ℹ 8 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## #   AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_SODIUM <dbl>,
## #   AHEI_ALCOHOL_F <dbl>, SSB_FRTJ_SERV <dbl>
AHEI_M_ASA24(ASA24_exp_detailed) # for participants who are all male## Since no SSB code is provided, the default SSB code from 17-18 FNDDS file is used.
## RECALL_SUMMARIZE = TRUE, summarizing HEI2015 for ASA24 data by averaging over all possible recalls per person per day...
## Reminder: this AHEI index is for male only. Please stratify your data first and provide male only data.
## # A tibble: 21 × 14
## # Groups:   UserName, UserID [21]
##    UserName UserID          AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN_M
##    <chr>    <chr>              <dbl>       <dbl>    <dbl>    <dbl>         <dbl>
##  1 THR01    e6541891-8a22-…     51.1        48.6    5.36     0.988         5.62 
##  2 THR02    dbb278b0-b589-…     44.9        42.4    6.94     0             0.251
##  3 THR03    f0115426-e6f8-…     39.0        36.5    9.24     2.48          0.857
##  4 THR04    337d84a7-3bff-…     52.1        49.6    3.84     0             3.17 
##  5 THR05    998f098a-8584-…     45.7        36.3    0        0             1.72 
##  6 THR06    aae330db-8f22-…     45.1        42.6    3.16     2.56          0    
##  7 THR07    76e0f3e1-8e17-…     51.2        48.7    7.66     1.58          2.70 
##  8 THR08    24de994f-e06a-…     75.3        65.3    2.62     2.97         10    
##  9 THR09    8f61ae64-6a82-…     48.2        45.7    0.202    3.16          1.75 
## 10 THR10    b47ab1b8-e62b-…     58.6        56.1    5.27     0            10    
## # ℹ 11 more rows
## # ℹ 7 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## #   AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_SODIUM <dbl>,
## #   AHEI_ALCOHOL_M <dbl>
DHQ3 functions
Calculating HEI2015 for DHQ3
DATA_PATH = "/Users/james/Desktop/data/results.csv"
HEI2015_DHQ3(DATA_PATH)
#Use the example data
data("DHQ3_exp")
HEI2015_DHQ3(DHQ3_exp)## # A tibble: 23 × 16
##    `Respondent ID` TOTALKCAL HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
##              <dbl>     <dbl>       <dbl>            <dbl>       <dbl>
##  1               1     1849.        74.7            3.14        5    
##  2               2     1109.        77.9            4.96        5    
##  3               3     2134.        69.5            5           5    
##  4               4     1170.        77.1            5           5    
##  5               5     1238.        63.3            5           5    
##  6               6      759.        59.5            1.32        1.48 
##  7               7      727.        67.9            5           5    
##  8               8     1462.        66.7            3.59        5    
##  9               9     1080.        72.4            5           5    
## 10              10     1552.        55.5            0.684       0.644
## # ℹ 13 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## #   HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## #   HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## #   HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## #   HEI2015_SATFAT <dbl>
Calculating aMED for DHQ3
DATA_PATH = "/Users/james/Desktop/data/results.csv"
MED_DHQ3(DATA_PATH)
## # A tibble: 23 × 12
##    RESPONDENTID MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES
##           <dbl>   <dbl>      <dbl>   <dbl>   <dbl>      <dbl>       <dbl>
##  1            1       5          5       1       1          1           1
##  2            2       7          7       1       1          1           1
##  3            3       6          6       1       1          1           1
##  4            4       4          4       1       0          1           0
##  5            5       2          2       1       0          0           0
##  6            6       3          3       0       0          1           0
##  7            7       4          4       1       1          0           1
##  8            8       4          4       0       1          0           1
##  9            9       2          1       1       0          0           0
## 10           10       5          5       0       0          1           1
## # ℹ 13 more rows
## # ℹ 5 more variables: MED_NUTS <dbl>, MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## #   MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating AHEI for DHQ3
DATA_PATH = "/Users/james/Desktop/data/detail.csv"
AHEI_DHQ3(DATA_PATH)
## # A tibble: 23 × 15
##    RESPONDENTID GENDER AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN
##           <dbl>  <dbl>    <dbl>       <dbl>    <dbl>    <dbl>       <dbl>
##  1            1      1     61.7        59.2     5.36    2.3         7.18 
##  2            2      2     68.5        66.0     3.62    2.12        4.84 
##  3            3      2     58.3        49.9    10       3.33        2.65 
##  4            4      2     46.1        43.6     1.72    2.33        2.99 
##  5            5      2     60.4        50.4     2.68    2.75        1.06 
##  6            6      2     51.7        48.9     1.58    0.175       3.21 
##  7            7      1     54.8        52.3     4.12    3.18        1.48 
##  8            8      2     52.8        45.8     4.54    1.8         1.97 
##  9            9      2     61.7        51.7     1.58    2.55        0.983
## 10           10      2     54.2        50.6     2.1     0.175       5.44 
## # ℹ 13 more rows
## # ℹ 8 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## #   AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_TRANS <dbl>,
## #   AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating DASH for DHQ3
DATA_PATH = "/Users/james/Desktop/data/detail.csv"
DASH_DHQ3(DATA_PATH)
#Use the example data. Attention: the example data here is DHQ3_exp_detailed, which is different from DHQ3_exp. DHQ3_exp_detailed is only used for DASH_DHQ3
data("DHQ3_exp_detailed")
DASH_DHQ3(DHQ3_exp_detailed)## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 23 × 10
##    `Respondent ID` DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN
##              <dbl>    <dbl>    <dbl>    <dbl>        <dbl>       <dbl>
##  1               1       25        3        4            5           5
##  2               2       29        3        3            5           5
##  3               3       24        5        5            4           3
##  4               4       23        5        1            2           3
##  5               5       25        4        2            2           2
##  6               6       19        1        1            1           3
##  7               7       26        4        4            3           3
##  8               8       20        3        4            4           3
##  9               9       20        4        1            2           1
## 10              10       20        1        2            3           5
## # ℹ 13 more rows
## # ℹ 4 more variables: DASH_LOWF_DAIRY <dbl>, DASH_SODIUM <dbl>,
## #   DASH_REDPROC_MEAT <dbl>, DASH_SSB_FRTJ <dbl>
BLOCK FFQ functions
Calculating AHEI for BLOCK
DATA_PATH = "/Users/james/Desktop/block_exp.csv"
AHEI_BLOCK(DATA_PATH)
#Use the example data
data("BLOCK_exp")
AHEI_BLOCK(BLOCK_exp)## # A tibble: 5 × 15
##   RESPONDENTID GENDER AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN
##          <dbl>  <dbl>    <dbl>       <dbl>    <dbl>    <dbl>       <dbl>
## 1            1      1     48.1        45.6    1.58     3.69        5.01 
## 2            2      1     33.5        31.0    0.695    0.527       0.794
## 3            3      1     49.1        39.1    3.94     2.63        5.89 
## 4            4      1     47.1        44.6    1.79     5.39        5.17 
## 5            5      1     52.5        50.0    6.06     9.18        3.94 
## # ℹ 8 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## #   AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_TRANS <dbl>,
## #   AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating AHEIP for BLOCK
#Use the example data
data("BLOCK_exp")
AHEIP_BLOCK(BLOCK_exp)## # A tibble: 5 × 11
##   RESPONDENTID AHEIP_ALL AHEIP_VEG AHEIP_FRT AHEIP_WHITEREAD AHEIP_FIBER
##          <dbl>     <dbl>     <dbl>     <dbl>           <dbl>       <dbl>
## 1            1      38.3     1.58      3.69            0.351        5.41
## 2            2      26.0     0.695     0.527           0.717        4.42
## 3            3      51.6     3.94      2.63            0.477        8.3 
## 4            4      47.4     1.79      5.39            0.756        9.93
## 5            5      62.5     6.06      9.18            2.06         8.45
## # ℹ 5 more variables: AHEIP_TRANS <dbl>, AHEIP_POLYSAT <dbl>,
## #   AHEIP_CALCIUM <dbl>, AHEIP_FOLATE <dbl>, AHEIP_IRON <dbl>
Calculating DASH for BLOCK
#Use the example data
data("BLOCK_exp")
DASH_BLOCK(BLOCK_exp)## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 5 × 25
##   RESPONDENTID DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN
##          <dbl>    <dbl>    <dbl>    <dbl>        <dbl>       <dbl>
## 1            1       28        3        2            4           3
## 2            2       19        1        1            5           1
## 3            3       23        2        4            3           5
## 4            4       23        4        3            2           4
## 5            5       28        5        5            1           2
## # ℹ 19 more variables: DASH_LOWF_DAIRY <dbl>, DASH_SODIUM <dbl>,
## #   DASH_REDPROC_MEAT <dbl>, DASH_SSB_FRTJ <dbl>, DT_KCAL <dbl>,
## #   F_BERRIES <dbl>, F_WHOLE <dbl>, FRT_FRTJ_SERV <dbl>, VEG_SERV <dbl>,
## #   NUTSLEG_SERV <dbl>, WGRAIN_SERV <dbl>, LOWF_MILK_SERV <dbl>,
## #   YOGURT_SERV <dbl>, LOWF_ICECREAMFROYO_SERV <dbl>, LOWF_CHEESE_SERV <dbl>,
## #   LOWF_DAIRY_SERV <dbl>, SODIUM_SERV <dbl>, REDPROC_MEAT_SERV <dbl>,
## #   SSB_FRTJ_SERV <dbl>
Calculating DII for BLOCK
## # A tibble: 5 × 34
##   RESPONDENTID DII_ALL DII_NOETOH ALCOHOL  VITB12   VITB6 BCAROTENE CAFFEINE
##          <dbl>   <dbl>      <dbl>   <dbl>   <dbl>   <dbl>     <dbl>    <dbl>
## 1            1   3.74        3.46   0.278 -0.0682 -0.0157    0.464    0.0850
## 2            2   2.65        2.37   0.278 -0.0428  0.0928    0.552    0.0845
## 3            3  -1.59       -1.72   0.124  0.0986 -0.346     0.403    0.0849
## 4            4  -1.13       -1.41   0.278 -0.0588 -0.192    -0.0426   0.0842
## 5            5  -0.724      -1.00   0.278 -0.0758 -0.204    -0.584    0.0845
## # ℹ 26 more variables: CARB <dbl>, CHOLES <dbl>, KCAL <dbl>, TOTALFAT <dbl>,
## #   FIBER <dbl>, FOLICACID <dbl>, IRON <dbl>, MG <dbl>, MUFA <dbl>,
## #   NIACIN <dbl>, N3FAT <dbl>, N6FAT <dbl>, PROTEIN <dbl>, PUFA <dbl>,
## #   RIBOFLAVIN <dbl>, SATFAT <dbl>, SE <dbl>, THIAMIN <dbl>, TRANSFAT <dbl>,
## #   VITA <dbl>, VITC <dbl>, VITD <dbl>, VITE <dbl>, ZN <dbl>, TEA <dbl>,
## #   ISOFLAVONES <dbl>
Calculating HEI2015 for BLOCK
#Use the example data
data("BLOCK_exp")
HEI2015_BLOCK(BLOCK_exp)## # A tibble: 5 × 15
##   RESPONDENTID HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT HEI2015_VEG
##          <dbl>       <dbl>            <dbl>       <dbl>       <dbl>
## 1            1        76.6            5            5           2.57
## 2            2        42.0            0.986        1.08        1.32
## 3            3        56.0            2.25         3.56        2.42
## 4            4        48.7            5            5           1.11
## 5            5        65.7            5            5           5   
## # ℹ 10 more variables: HEI2015_GREENNBEAN <dbl>, HEI2015_TOTALPRO <dbl>,
## #   HEI2015_SEAPLANTPRO <dbl>, HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>,
## #   HEI2015_FATTYACID <dbl>, HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>,
## #   HEI2015_ADDEDSUGAR <dbl>, HEI2015_SATFAT <dbl>
Calculating aMED for BLOCK
## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 5 × 12
##   RESPONDENTID MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES
##          <dbl>   <dbl>      <dbl>   <dbl>   <dbl>      <dbl>       <dbl>
## 1            1       6          6       1       0          1           1
## 2            2       4          4       0       0          0           1
## 3            3       7          6       0       1          1           1
## 4            4       3          3       1       1          1           0
## 5            5       4          4       1       1          0           0
## # ℹ 5 more variables: MED_NUTS <dbl>, MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## #   MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Generic functions (works for any dietary assessment tool)
Calculating DI_GM for your own dietary assessment tool
data("DI_GM_VALIDATION")
DI_GM(SERV_DATA = DI_GM_VALIDATION, RESPONDENTID = DI_GM_VALIDATION$id, GENDER = DI_GM_VALIDATION$gender, AVOCADO = DI_GM_VALIDATION$avocado, BROCCOLI = DI_GM_VALIDATION$broccoli, CHICKPEA = DI_GM_VALIDATION$chickpea, COFFEE = DI_GM_VALIDATION$coffee, CRANBERRY = DI_GM_VALIDATION$cranberry, FERMENTED_DAIRY = DI_GM_VALIDATION$fermented_dairy, FIBER = DI_GM_VALIDATION$fiber, GREEN_TEA = DI_GM_VALIDATION$green_tea, SOYBEAN = DI_GM_VALIDATION$soybean, WHOLE_GRAIN = DI_GM_VALIDATION$whole_grain, TOTAL_FAT_PERCENTAGE = DI_GM_VALIDATION$total_fat_percentage, PROCESSED_MEAT = DI_GM_VALIDATION$processed_meat, RED_MEAT = DI_GM_VALIDATION$red_meat, REFINED_GRAIN = DI_GM_VALIDATION$refined_grain)## Reminder: this DI_GM index uses sex-specific medians to rank participants' food/drink serving sizes and then calculate DI_GM component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 10 × 17
##    RESPONDENTID GENDER DI_GM_TOTAL DI_GM_AVOCADO DI_GM_BROCCOLI DI_GM_CHICKPEA
##           <dbl>  <dbl>       <dbl>         <dbl>          <dbl>          <dbl>
##  1            1      2           0             0              0              0
##  2            2      2           0             0              0              0
##  3            3      2          11             1              1              1
##  4            4      2          14             1              1              1
##  5            5      2          14             1              1              1
##  6            6      1          14             1              1              1
##  7            7      1          14             1              1              1
##  8            8      1          11             1              1              1
##  9            9      1           0             0              0              0
## 10           10      1           0             0              0              0
## # ℹ 11 more variables: DI_GM_COFFEE <dbl>, DI_GM_CRANBERRY <dbl>,
## #   DI_GM_FERMENTED_DAIRY <dbl>, DI_GM_FIBER <dbl>, DI_GM_GREEN_TEA <dbl>,
## #   DI_GM_SOYBEAN <dbl>, DI_GM_WHOLE_GRAIN <dbl>,
## #   DI_GM_TOTAL_FAT_PERCENTAGE <dbl>, DI_GM_PROCESSED_MEAT <dbl>,
## #   DI_GM_RED_MEAT <dbl>, DI_GM_REFINED_GRAIN <dbl>
Calculating HEI2020 for your own dietary assessment tool
#Use the example data
data("HEI2020_VALIDATION")
HEI2020(SERV_DATA = HEI2020_VALIDATION,RESPONDENTID = HEI2020_VALIDATION$id,AGE = HEI2020_VALIDATION$age,TOTALKCAL_HEI2020 = HEI2020_VALIDATION$kcal,TOTALFRT_SERV_HEI2020 = HEI2020_VALIDATION$total_fruit,FRT_SERV_HEI2020 = HEI2020_VALIDATION$whole_fruit,VEG_SERV_HEI2020 = HEI2020_VALIDATION$total_vegetable,GREENNBEAN_SERV_HEI2020 = HEI2020_VALIDATION$green_and_bean,TOTALPRO_SERV_HEI2020 = HEI2020_VALIDATION$total_protein,SEAPLANTPRO_SERV_HEI2020 = HEI2020_VALIDATION$seafood_plant_protein,WHOLEGRAIN_SERV_HEI2020 = HEI2020_VALIDATION$whole_grain,DAIRY_SERV_HEI2020 = HEI2020_VALIDATION$dairy,FATTYACID_SERV_HEI2020 = HEI2020_VALIDATION$fatty_acid,REFINEDGRAIN_SERV_HEI2020 = HEI2020_VALIDATION$refined_grain,SODIUM_SERV_HEI2020 = HEI2020_VALIDATION$sodium,ADDEDSUGAR_SERV_HEI2020 = HEI2020_VALIDATION$added_sugar,SATFAT_SERV_HEI2020 = HEI2020_VALIDATION$saturated_fat)## # A tibble: 22 × 17
##    RESPONDENTID   AGE TOTALKCAL_HEI2020 HEI2020_ALL HEI2020_TOTALFRT HEI2020_FRT
##           <dbl> <dbl>             <dbl>       <dbl>            <dbl>       <dbl>
##  1            1    18              1000          40              0           0  
##  2            2    18              1000          42              0.5         0.5
##  3            3    18              1000          44              1           1  
##  4            4    18              1000          46              1.5         1.5
##  5            5    18              1000          48              2           2  
##  6            6    18              1000          50              2.5         2.5
##  7            7    18              1000          52              3           3  
##  8            8    18              1000          54              3.5         3.5
##  9            9    18              1000          56              4           4  
## 10           10    18              1000          58              4.5         4.5
## # ℹ 12 more rows
## # ℹ 11 more variables: HEI2020_VEG <dbl>, HEI2020_GREENNBEAN <dbl>,
## #   HEI2020_TOTALPRO <dbl>, HEI2020_SEAPLANTPRO <dbl>,
## #   HEI2020_WHOLEGRAIN <dbl>, HEI2020_DAIRY <dbl>, HEI2020_FATTYACID <dbl>,
## #   HEI2020_REFINEDGRAIN <dbl>, HEI2020_SODIUM <dbl>, HEI2020_ADDEDSUGAR <dbl>,
## #   HEI2020_SATFAT <dbl>
Calculating HEI2015 for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
HEI2015(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$TOTALKCAL, SERV_DATA$VEG_SERV, SERV_DATA$FRT_SERV, SERV_DATA$WGRAIN_SERV, SERV_DATA$NUTSLEG_SERV, SERV_DATA$N3FAT_SERV, SERV_DATA$PUFA_SERV, SERV_DATA$SSB_FRTJ_SERV, SERV_DATA$REDPROC_MEAT_SERV, SERV_DATA$TRANS_SERV, SERV_DATA$SODIUM_SERV, SERV_DATA$ALCOHOL_SERV)
#Use the example data
data("SERV_DATA_exp")
HEI2015(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$TOTALKCAL, SERV_DATA_exp$TOTALFRT_SERV_HEI2015_exp, SERV_DATA_exp$FRT_SERV_HEI2015_exp, SERV_DATA_exp$VEG_SERV_HEI2015_exp, SERV_DATA_exp$GREENNBEAN_SERV_HEI2015_exp, SERV_DATA_exp$TOTALPRO_SERV_HEI2015_exp,  SERV_DATA_exp$SEAPLANTPRO_SERV_HEI2015_exp, SERV_DATA_exp$WHOLEGRAIN_SERV_HEI2015_exp, SERV_DATA_exp$DAIRY_SERV_HEI2015_exp, SERV_DATA_exp$FATTYACID_SERV_HEI2015_exp, SERV_DATA_exp$REFINEDGRAIN_SERV_HEI2015_exp,  SERV_DATA_exp$SODIUM_SERV_HEI2015_exp, SERV_DATA_exp$ADDEDSUGAR_SERV_HEI2015_exp, SERV_DATA_exp$SATFAT_SERV_HEI2015_exp)## # A tibble: 21 × 16
##    RESPONDENTID TOTALKCAL_HEI2015 HEI2015_ALL HEI2015_TOTALFRT HEI2015_FRT
##           <dbl>             <dbl>       <dbl>            <dbl>       <dbl>
##  1            1             2019.        69.8             1.26        2.45
##  2            2             1247.        52.8             5           0   
##  3            3             2206.        51.2             5           5   
##  4            4             2095.        47.5             0           0   
##  5            5             1209.        45.2             0           0   
##  6            6             1694.        52.9             3.78        5   
##  7            7             3549.        48.4             1.51        2.23
##  8            8             2718.        69.0             2.76        5   
##  9            9             1959.        70.9             5           5   
## 10           10             2181.        61.2             2.64        0   
## # ℹ 11 more rows
## # ℹ 11 more variables: HEI2015_VEG <dbl>, HEI2015_GREENNBEAN <dbl>,
## #   HEI2015_TOTALPRO <dbl>, HEI2015_SEAPLANTPRO <dbl>,
## #   HEI2015_WHOLEGRAIN <dbl>, HEI2015_DAIRY <dbl>, HEI2015_FATTYACID <dbl>,
## #   HEI2015_REFINEDGRAIN <dbl>, HEI2015_SODIUM <dbl>, HEI2015_ADDEDSUGAR <dbl>,
## #   HEI2015_SATFAT <dbl>
Calculating AHEI for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
AHEI(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$GENDER, SERV_DATA$VEG_SERV, SERV_DATA$FRT_SERV, SERV_DATA$WGRAIN_SERV, SERV_DATA$NUTSLEG_SERV, SERV_DATA$N3FAT_SERV, SERV_DATA$PUFA_SERV, SERV_DATA$SSB_FRTJ_SERV, SERV_DATA$REDPROC_MEAT_SERV, SERV_DATA$TRANS_SERV,SODIUM_SERV, SERV_DATA$ALCOHOL_SERV)
#Use the example data
data("SERV_DATA_exp")
AHEI(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$SEX, SERV_DATA_exp$TOTALKCAL, SERV_DATA_exp$VEG_SERV_AHEI_exp, SERV_DATA_exp$FRT_SERV_AHEI_exp, SERV_DATA_exp$WGRAIN_SERV_AHEI_exp, SERV_DATA_exp$NUTSLEG_SERV_AHEI_exp, SERV_DATA_exp$N3FAT_SERV_AHEI_exp, SERV_DATA_exp$PUFA_SERV_AHEI_exp, SERV_DATA_exp$SSB_FRTJ_SERV_AHEI_exp, SERV_DATA_exp$REDPROC_MEAT_SERV_AHEI_exp, SERV_DATA_exp$TRANS_SERV_AHEI_exp, SERV_DATA_exp$SODIUM_SERV_AHEI_exp, SERV_DATA_exp$ALCOHOL_SERV_AHEI_exp)## # A tibble: 21 × 15
##    RESPONDENTID GENDER AHEI_ALL AHEI_NOETOH AHEI_VEG AHEI_FRT AHEI_WGRAIN
##           <dbl>  <dbl>    <dbl>       <dbl>    <dbl>    <dbl>       <dbl>
##  1            1      1     56.9        54.4    2.68     0.988       5.62 
##  2            2      1     43.4        40.9    3.47     0           0.251
##  3            3      1     34.3        31.8    4.62     2.48        0.857
##  4            4      1     50.1        47.6    1.92     0           3.17 
##  5            5      1     47.3        37.9    0        0           1.72 
##  6            6      1     52.2        49.7    1.58     2.56        0    
##  7            7      1     47.4        44.9    3.83     1.58        2.70 
##  8            8      1     80.2        70.2    1.31     2.97       10    
##  9            9      1     57.0        54.5    0.101    3.16        1.75 
## 10           10      1     56.0        53.5    2.63     0          10    
## # ℹ 11 more rows
## # ℹ 8 more variables: AHEI_NUTSLEG <dbl>, AHEI_N3FAT <dbl>, AHEI_PUFA <dbl>,
## #   AHEI_SSB_FRTJ <dbl>, AHEI_REDPROC_MEAT <dbl>, AHEI_TRANS <dbl>,
## #   AHEI_SODIUM <dbl>, AHEI_ALCOHOL <dbl>
Calculating DASH for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
DASH(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$TOTALKCAL_DASH, SERV_DATA$FRT_FRTJ_SERV_DASH, SERV_DATA$VEG_SERV_DASH, SERV_DATA$NUTSLEG_SERV_DASH, SERV_DATA$WGRAIN_SERV_DASH, SERV_DATA$LOWF_DAIRY_SERV_DASH, SERV_DATA$SODIUM_SERV_DASH, SERV_DATA$REDPROC_MEAT_SERV_DASH, SERV_DATA$SSB_FRTJ_SERV_DASH)
#Use the example data
data("SERV_DATA_exp")
DASH(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$TOTALKCAL, SERV_DATA_exp$FRT_FRTJ_SERV_DASH_exp, SERV_DATA_exp$VEG_SERV_DASH_exp, SERV_DATA_exp$NUTSLEG_SERV_DASH_exp, SERV_DATA_exp$WGRAIN_SERV_DASH_exp, SERV_DATA_exp$LOWF_DAIRY_SERV_DASH_exp, SERV_DATA_exp$SODIUM_SERV_DASH_exp, SERV_DATA_exp$REDPROC_MEAT_SERV_DASH_exp, SERV_DATA_exp$SSB_FRTJ_SERV_DASH_exp)## Reminder: this DASH index uses quintiles to rank participants' food/drink serving sizes and then calculate DASH component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 21 × 10
##    RESPONDENTID DASH_ALL DASH_FRT DASH_VEG DASH_NUTSLEG DASH_WGRAIN
##           <dbl>    <dbl>    <dbl>    <dbl>        <dbl>       <dbl>
##  1            1       29        2        3            5           5
##  2            2       22        5        3            2           2
##  3            3       18        5        5            2           2
##  4            4       25        1        2            3           5
##  5            5       16        1        1            1           3
##  6            6       23        4        2            1           1
##  7            7       26        3        4            1           4
##  8            8       29        4        1            3           5
##  9            9       27        5        1            5           3
## 10           10       29        3        3            4           5
## # ℹ 11 more rows
## # ℹ 4 more variables: DASH_LOWF_DAIRY <dbl>, DASH_SODIUM <dbl>,
## #   DASH_REDPROC_MEAT <dbl>, DASH_SSB_FRTJ <dbl>
Calculating DASHI for your own dietary assessment tool
#Use the example data
data("DASH_trial")
DASHI(SERV_DATA = DASH_trial, RESPONDENTID = DASH_trial$Diet_Type,TOTALKCAL_DASHI = DASH_trial$Kcal, TOTAL_FAT_DASHI = DASH_trial$Totalfat_Percent, SAT_FAT_DASHI = DASH_trial$Satfat_Percent, PROTEIN_DASHI = DASH_trial$Protein_Percent, CHOLESTEROL_DASHI = DASH_trial$Cholesterol, FIBER_DASHI = DASH_trial$Fiber, POTASSIUM_DASHI = DASH_trial$Potassium, MAGNESIUM_DASHI = DASH_trial$Magnesium, CALCIUM_DASHI = DASH_trial$Calcium, SODIUM_DASHI = DASH_trial$Sodium)## # A tibble: 5 × 12
##   RESPONDENTID    DASHI_ALL TOTALKCAL_DASHI DASHI_TOTAL_FAT DASHI_SAT_FAT
##   <chr>               <dbl>           <dbl>           <dbl>         <dbl>
## 1 DASH                7.79             2100           1              0.9 
## 2 DASH_lowSodium      8.79             2100           1              0.9 
## 3 DASH_MedSodium      8.76             2100           1              0.9 
## 4 DASH_HighSodium     7.79             2100           1              0.9 
## 5 Control             0.833            2100           0.130          0.19
## # ℹ 7 more variables: DASHI_PROTEIN <dbl>, DASHI_CHOLESTEROL <dbl>,
## #   DASHI_FIBER <dbl>, DASHI_POTASSIUM <dbl>, DASHI_MAGNESIUM <dbl>,
## #   DASHI_CALCIUM <dbl>, DASHI_SODIUM <dbl>
Calculating aMED for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
MED(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$FRT_FRTJ_SERV, SERV_DATA$VEG_SERV, SERV_DATA$WGRAIN_SERV, SERV_DATA$LEGUMES_SERV, SERV_DATA$NUTS_SERV,FISH_SERV, SERV_DATA$REDPROC_MEAT_SERV, SERV_DATA$MONSATFAT_SERV, SERV_DATA$ALCOHOL_SERV)
#Use the example data
data("SERV_DATA_exp")
MED(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$FRT_FRTJ_SERV_MED_exp, SERV_DATA_exp$VEG_SERV_MED_exp, SERV_DATA_exp$WGRAIN_SERV_MED_exp, SERV_DATA_exp$LEGUMES_SERV_MED_exp, SERV_DATA_exp$NUTS_SERV_MED_exp, SERV_DATA_exp$FISH_SERV_MED_exp, SERV_DATA_exp$REDPROC_MEAT_SERV_MED_exp, SERV_DATA_exp$MONSATFAT_SERV_MED_exp, SERV_DATA_exp$ALCOHOL_SERV_MED_exp)## Reminder: this MED index uses medians to rank participants' food/drink serving sizes and then calculate MED component scores, which may generate results that are specific to your study population but not comparable to other populations.
## # A tibble: 21 × 12
##    RESPONDENTID MED_ALL MED_NOETOH MED_FRT MED_VEG MED_WGRAIN MED_LEGUMES
##           <dbl>   <dbl>      <dbl>   <dbl>   <dbl>      <dbl>       <dbl>
##  1            1       6          6       0       1          1           1
##  2            2       4          4       1       1          0           1
##  3            3       4          4       1       1          0           0
##  4            4       4          4       0       0          1           1
##  5            5       0          0       0       0          0           0
##  6            6       3          3       1       0          0           0
##  7            7       4          4       1       1          1           0
##  8            8       5          5       1       0          1           0
##  9            9       5          5       1       0          1           1
## 10           10       4          4       1       0          1           1
## # ℹ 11 more rows
## # ℹ 5 more variables: MED_NUTS <dbl>, MED_FISH <dbl>, MED_REDPROC_MEAT <dbl>,
## #   MED_MONSATFAT <dbl>, MED_ALCOHOL <dbl>
Calculating MEDI for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
MEDI(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$OLIVE_OIL_SERV_MEDI, SERV_DATA$FRT_SERV_MEDI, SERV_DATA$VEG_SERV_MEDI, SERV_DATA$LEGUMES_SERV_MEDI, SERV_DATA$NUTS_SERV_MEDI, SERV_DATA$FISH_SEAFOOD_SERV_MEDI, SERV_DATA$ALCOHOL_SERV_MEDI, SERV_DATA$SSB_SERV_MEDI, SERV_DATA$SWEETS_SERV_MEDI, SERV_DATA$DISCRET_FAT_SERV_MEDI, SERV_DATA$REDPROC_MEAT_SERV_MEDI)
#Use the example data
data("PREDIMED_trial")
# MEDI is 0/1 point scoring criteria.
MEDI(
  SERV_DATA = PREDIMED_trial,
  RESPONDENTID = PREDIMED_trial$Diet_Type,
  OLIVE_OIL_SERV_MEDI = PREDIMED_trial$Virgin_Oliveoil,
  FRT_SERV_MEDI = PREDIMED_trial$Fruits, 
  VEG_SERV_MEDI = PREDIMED_trial$Vegetables,
  LEGUMES_SERV_MEDI = PREDIMED_trial$Legumes,
  NUTS_SERV_MEDI = PREDIMED_trial$Total_nuts,
  FISH_SEAFOOD_SERV_MEDI = PREDIMED_trial$Fish_Seafood,
  ALCOHOL_SERV_MEDI = PREDIMED_trial$Alcohol,
  SSB_SERV_MEDI = PREDIMED_trial$Soda_Drinks,
  SWEETS_SERV_MEDI = PREDIMED_trial$Sweets,
  DISCRET_FAT_SERV_MEDI = PREDIMED_trial$Refined_Oliveoil,
  REDPROC_MEAT_SERV_MEDI = PREDIMED_trial$Meat)## # A tibble: 3 × 14
##   RESPONDENTID MEDI_ALL MEDI_NOETOH MEDI_OLIVE_OIL MEDI_FRT MEDI_VEG
##   <chr>           <dbl>       <dbl>          <dbl>    <dbl>    <dbl>
## 1 Med_Oliveoil        8           7              1        1        1
## 2 Med_Nuts            7           7              0        1        1
## 3 Control             5           5              0        0        1
## # ℹ 8 more variables: MEDI_LEGUMES <dbl>, MEDI_NUTS <dbl>, MEDI_FISH <dbl>,
## #   MEDI_ALCOHOL <dbl>, MEDI_SSB <dbl>, MEDI_SWEETS <dbl>,
## #   MEDI_DISCRET_FAT <dbl>, MEDI_REDPROC_MEAT <dbl>
# MEDI_V2 is 5 point scoring criteria
MEDI_V2(
    SERV_DATA = PREDIMED_trial,
    RESPONDENTID = PREDIMED_trial$Diet_Type,
    OLIVE_OIL_SERV_MEDI = PREDIMED_trial$Virgin_Oliveoil,
    FRT_SERV_MEDI = PREDIMED_trial$Fruits, 
    VEG_SERV_MEDI = PREDIMED_trial$Vegetables,
    LEGUMES_SERV_MEDI = PREDIMED_trial$Legumes,
    NUTS_SERV_MEDI = PREDIMED_trial$Total_nuts,
    FISH_SEAFOOD_SERV_MEDI = PREDIMED_trial$Fish_Seafood,
    ALCOHOL_SERV_MEDI = PREDIMED_trial$Alcohol,
    SSB_SERV_MEDI = PREDIMED_trial$Soda_Drinks,
    SWEETS_SERV_MEDI = PREDIMED_trial$Sweets,
    DISCRET_FAT_SERV_MEDI = PREDIMED_trial$Refined_Oliveoil,
    REDPROC_MEAT_SERV_MEDI = PREDIMED_trial$Meat
)## # A tibble: 3 × 14
##   RESPONDENTID MEDI_V2_ALL MEDI_V2_NOETOH MEDI_OLIVE_OIL MEDI_FRT MEDI_VEG
##   <chr>              <dbl>          <dbl>          <dbl>    <dbl>    <dbl>
## 1 Med_Oliveoil        42.5           35.0           5        5           5
## 2 Med_Nuts            36.7           30.8           3.19     5           5
## 3 Control             33.7           29.1           2.27     4.92        5
## # ℹ 8 more variables: MEDI_LEGUMES <dbl>, MEDI_NUTS <dbl>, MEDI_FISH <dbl>,
## #   MEDI_ALCOHOL <dbl>, MEDI_SSB <dbl>, MEDI_SWEETS <dbl>,
## #   MEDI_DISCRET_FAT <dbl>, MEDI_REDPROC_MEAT <dbl>
Calculating DII for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
DII(SERV_DATA, SERV_DATA$RESPONDENTID, REPEATNUM=1, SERV_DATA$ALCOHOL_DII, SERV_DATA$VITB12_DII, SERV_DATA$VITB6_DII, SERV_DATA$BCAROTENE_DII, SERV_DATA$CAFFEINE_DII, SERV_DATA$CARB_DII, SERV_DATA$CHOLES_DII, SERV_DATA$KCAL_DII, SERV_DATA$EUGENOL_DII, SERV_DATA$TOTALFAT_DII, SERV_DATA$FIBER_DII, SERV_DATA$FOLICACID_DII, SERV_DATA$GARLIC_DII, SERV_DATA$GINGER_DII, SERV_DATA$IRON_DII, SERV_DATA$MG_DII, SERV_DATA$MUFA_DII, SERV_DATA$NIACIN_DII, SERV_DATA$N3FAT_DII, SERV_DATA$N6FAT_DII, SERV_DATA$ONION_DII, SERV_DATA$PROTEIN_DII, SERV_DATA$PUFA_DII, SERV_DATA$RIBOFLAVIN_DII, SERV_DATA$SAFFRON_DII, SERV_DATA$SATFAT_DII, SERV_DATA$SE_DII, SERV_DATA$THIAMIN_DII, SERV_DATA$TRANSFAT_DII, SERV_DATA$TURMERIC_DII, SERV_DATA$VITA_DII, SERV_DATA$VITC_DII, SERV_DATA$VITD_DII, SERV_DATA$VITE_DII, SERV_DATA$ZN_DII, SERV_DATA$TEA_DII, SERV_DATA$FLA3OL_DII, SERV_DATA$FLAVONES_DII, SERV_DATA$FLAVONOLS_DII, SERV_DATA$FLAVONONES_DII, SERV_DATA$ANTHOC_DII, SERV_DATA$ISOFLAVONES_DII, SERV_DATA$PEPPER_DII, SERV_DATA$THYME_DII, SERV_DATA$ROSEMARY_DII)
#Use the example data
data("DHQ3_exp")
DII(DHQ3_exp, DHQ3_exp$`Respondent ID`, 1, DHQ3_exp$`Alcohol (g)`, DHQ3_exp$`Vitamin B12 (mcg)`, DHQ3_exp$`Vitamin B6 (mg)`)## It is normal to see warnings if you do not provide all arguments using DII. The algorithm will only count the arguments you enter to calculate the DII. All warnings are about the first column you don't use. For example, if you only entered alcohol, vitamin b12, and vitamin b6, all warnings would remind you that bcarotene is not found.
## Warning: Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## Unknown or uninitialised column: `BCAROTENE_DII`.
## # A tibble: 23 × 49
## # Groups:   RESPONDENTID [23]
##    RESPONDENTID DII_ALL DII_NOETOH REPEATNUM ALCOHOL_DII VITB12_DII VITB6_DII
##           <dbl>   <dbl>      <dbl>     <dbl>       <dbl>      <dbl>     <dbl>
##  1            1  0.0479    -0.230          1       0.278    -0.0232   -0.207 
##  2            2  0.208     -0.0697         1       0.278    -0.0855    0.0157
##  3            3 -0.115     -0.384          1       0.270    -0.0361   -0.348 
##  4            4  0.0194    -0.258          1       0.278    -0.0486   -0.210 
##  5            5  0.277      0.0425         1       0.234    -0.0760    0.119 
##  6            6  0.448      0.170          1       0.278    -0.0949    0.265 
##  7            7  0.348      0.0699         1       0.278    -0.0869    0.157 
##  8            8 -0.0124    -0.286          1       0.274    -0.0574   -0.229 
##  9            9  0.101     -0.0525         1       0.153    -0.0682    0.0157
## 10           10  0.170     -0.108          1       0.277    -0.0297   -0.0778
## # ℹ 13 more rows
## # ℹ 42 more variables: BCAROTENE_DII <dbl>, CAFFEINE_DII <int>, CARB_DII <int>,
## #   CHOLES_DII <int>, KCAL_DII <int>, EUGENOL_DII <int>, TOTALFAT_DII <int>,
## #   FIBER_DII <int>, FOLICACID_DII <int>, GARLIC_DII <int>, GINGER_DII <int>,
## #   IRON_DII <int>, MG_DII <int>, MUFA_DII <int>, NIACIN_DII <int>,
## #   N3FAT_DII <int>, N6FAT_DII <int>, ONION_DII <int>, PROTEIN_DII <int>,
## #   PUFA_DII <int>, RIBOFLAVIN_DII <int>, SAFFRON_DII <int>, …
Calculating ACS2020_V1 or ACS2020_V2 for your own dietary assessment tool
DATA_PATH <- "/Users/james/Desktop/data.csv"
SERV_DATA <- read_csv(DATA_PATH)
ACS2020_V1(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$GENDER, SERV_DATA$VEG_SERV_ACS2020, SERV_DATA$VEG_ITEMS_SERV_ACS2020, SERV_DATA$FRT_SERV_ACS2020, SERV_DATA$FRT_ITEMS_SERV_ACS2020, SERV_DATA$WGRAIN_SERV_ACS2020, SERV_DATA$SSB_FRTJ_SERV_ACS2020, SERV_DATA$REDPROC_MEAT_SERV_ACS2020, SERV_DATA$HPFRG_RATIO_SERV_ACS2020)
ACS2020_V2(SERV_DATA, SERV_DATA$RESPONDENTID, SERV_DATA$GENDER, SERV_DATA$TOTALKCAL_ACS2020, SERV_DATA$VEG_SERV_ACS2020, SERV_DATA$VEG_ITEMS_SERV_ACS2020, SERV_DATA$FRT_SERV_ACS2020, SERV_DATA$FRT_ITEMS_SERV_ACS2020, SERV_DATA$WGRAIN_SERV_ACS2020, SERV_DATA$SSB_FRTJ_SERV_ACS2020, SERV_DATA$REDPROC_MEAT_SERV_ACS2020, SERV_DATA$HPFRG_SERV_ACS2020)
Calculating PHDI for your own dietary assessment tool
#Use the example data
data("PHDI_VALIDATION")
PHDI(SERV_DATA=PHDI_VALIDATION, PHDI_VALIDATION$id, PHDI_VALIDATION$gender, PHDI_VALIDATION$TOTALKCAL_PHDI, PHDI_VALIDATION$WGRAIN_SERV_PHDI, PHDI_VALIDATION$STARCHY_VEG_SERV_PHDI, PHDI_VALIDATION$VEG_SERV_PHDI, PHDI_VALIDATION$FRT_SERV_PHDI, PHDI_VALIDATION$DAIRY_SERV_PHDI, PHDI_VALIDATION$REDPROC_MEAT_SERV_PHDI, PHDI_VALIDATION$POULTRY_SERV_PHDI, PHDI_VALIDATION$EGG_SERV_PHDI, PHDI_VALIDATION$FISH_SERV_PHDI, PHDI_VALIDATION$NUTS_SERV_PHDI, PHDI_VALIDATION$LEGUMES_SERV_PHDI, PHDI_VALIDATION$SOY_SERV_PHDI, PHDI_VALIDATION$ADDED_FAT_UNSAT_SERV_PHDI, PHDI_VALIDATION$ADDED_FAT_SAT_TRANS_SERV_PHDI, PHDI_VALIDATION$ADDED_SUGAR_SERV_PHDI)## # A tibble: 26 × 19
##    RESPONDENTID GENDER PHDI_ALL TOTALKCAL_PHDI PHDI_WGRAIN PHDI_STARCHY_VEG
##           <dbl>  <dbl>    <dbl>          <dbl>       <dbl>            <dbl>
##  1            1      2        0           2000           0                0
##  2            2      2        0           2000           0                0
##  3            3      2       14           2000           1                1
##  4            4      2       28           2000           2                2
##  5            5      2       42           2000           3                3
##  6            6      2       56           2000           4                4
##  7            7      2       70           2000           5                5
##  8            8      2       84           2000           6                6
##  9            9      2       98           2000           7                7
## 10           10      2      112           2000           8                8
## # ℹ 16 more rows
## # ℹ 13 more variables: PHDI_VEG <dbl>, PHDI_FRT <dbl>, PHDI_DAIRY <dbl>,
## #   PHDI_REDPROC_MEAT <dbl>, PHDI_POULTRY <dbl>, PHDI_EGG <dbl>,
## #   PHDI_FISH <dbl>, PHDI_NUTS <dbl>, PHDI_LEGUMES <dbl>, PHDI_SOY <dbl>,
## #   PHDI_ADDED_FAT_UNSAT <dbl>, PHDI_ADDED_FAT_SAT <dbl>,
## #   PHDI_ADDED_SUGAR <dbl>
Processing dietaryindex outputs
Merge 2 dietary index results together
data(NHANES_20152016)
data(NHANES_20172018)
# HEI_NHANES_FPED
## 2017-2018 day 1 and day 2
HEI2020_NHANES_FPED_1718 = HEI2020_NHANES_FPED(
    FPED_PATH=NHANES_20172018$FPED, 
    NUTRIENT_PATH=NHANES_20172018$NUTRIENT, 
    DEMO_PATH=NHANES_20172018$DEMO, 
    FPED_PATH2=NHANES_20172018$FPED2, 
    NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)
## 2015-2016 day 1 and day 2
HEI2020_NHANES_FPED_1516 = HEI2020_NHANES_FPED(
    FPED_PATH=NHANES_20152016$FPED, 
    NUTRIENT_PATH=NHANES_20152016$NUTRIENT, 
    DEMO_PATH=NHANES_20152016$DEMO, 
    FPED_PATH2=NHANES_20152016$FPED2, 
    NUTRIENT_PATH2=NHANES_20152016$NUTRIENT2)
# Now, merge the two datasets
HEI2020_NHANES_FPED_17181516 = rbind(HEI2020_NHANES_FPED_1718, HEI2020_NHANES_FPED_1516)
# Save the result on your computer
# HEI2020_NHANES_FPED_17181516_df = as.data.frame(HEI2020_NHANES_FPED_17181516)
# readr::write_csv(HEI2020_NHANES_FPED_17181516_df, "/your_output_file_location/HEI2020_NHANES_FPED_17181516_df.csv")
Merge dietary index results with other NHANES data
data(NHANES_20172018)
# HEI_NHANES_FPED
## 2017-2018 day 1 and day 2
HEI2020_NHANES_FPED_1718 = HEI2020_NHANES_FPED(
    FPED_PATH=NHANES_20172018$FPED, 
    NUTRIENT_PATH=NHANES_20172018$NUTRIENT, 
    DEMO_PATH=NHANES_20172018$DEMO, 
    FPED_PATH2=NHANES_20172018$FPED2, 
    NUTRIENT_PATH2=NHANES_20172018$NUTRIENT2)
# Blood pressure data
## library(haven)
BP_1718 = read_xpt("BPX_J.XPT")
## library(dplyr)
BP_HEI2020_1718 = inner_join(HEI2020_NHANES_FPED_1718, BP_1718, by="SEQN")
Add dietary index output to your own data and save the result
# Store the output of HEI2015 in "HEI2015_output"
data("SERV_DATA_exp")
HEI2015_output = HEI2015(SERV_DATA_exp, SERV_DATA_exp$UserName, SERV_DATA_exp$TOTALKCAL, SERV_DATA_exp$TOTALFRT_SERV_HEI2015_exp, SERV_DATA_exp$FRT_SERV_HEI2015_exp, SERV_DATA_exp$VEG_SERV_HEI2015_exp, SERV_DATA_exp$GREENNBEAN_SERV_HEI2015_exp, SERV_DATA_exp$TOTALPRO_SERV_HEI2015_exp,  SERV_DATA_exp$SEAPLANTPRO_SERV_HEI2015_exp, SERV_DATA_exp$WHOLEGRAIN_SERV_HEI2015_exp, SERV_DATA_exp$DAIRY_SERV_HEI2015_exp, SERV_DATA_exp$FATTYACID_SERV_HEI2015_exp, SERV_DATA_exp$REFINEDGRAIN_SERV_HEI2015_exp,  SERV_DATA_exp$SODIUM_SERV_HEI2015_exp, SERV_DATA_exp$ADDEDSUGAR_SERV_HEI2015_exp, SERV_DATA_exp$SATFAT_SERV_HEI2015_exp)
# Merge the HEI2015_output with your own data by the participant ID
# Here, the HEI2015_output'S participant ID is "RESPONDENTID", while the participant ID in your selected data may vary (SERV_DATA_exp's participant ID UserName) and it should be the column name of SERV_DATA$RESPONDENTID in the HEI2015 function
Merged_HEI2015_output = left_join(SERV_DATA_exp, HEI2015_output, by=c("UserName" = "RESPONDENTID"))
# Save the result on your computer
readr::write_csv(Merged_HEI2015_output, "/your_output_file_location/Merged_HEI2015_output.csv")